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Electromagnetic energy within magnetic spheres
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Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite
radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electro-
magnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal
energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmag-
netic medium properties. This result is valid even, and especially, for low size parameter values. Expressions
for the contributions of the radial and angular field components to the internal energy are determined. For the
analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section
in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by
particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is
to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual
properties of the magnetic scatters, which could be important in some applications. © 2010 Optical Society of
America

OCIS codes: 290.0290, 290.4020, 290.5825, 290.5850.
q
c
f
t
fi
l
N
Z
fi
s

p
E
h
e
s
t
d
[
s
t

t
p
u
c
l
S
s
p
i
s
t
s

. INTRODUCTION
he research in magneto-optics, both theoretical and ex-
erimental, has been mainly devoted to the study of mag-
etic properties of thin films. Magneto-optical effects are
haracterized by the change in the state of light polariza-
ion in the presence of magnetic materials, both in trans-
ission (Faraday effect) and reflection (Kerr effect). Bril-

ouin light scattering technique allows the investigation
f spin waves in magnetic films and layered structures
hrough the light scattering by magnons. Here, we are
oncerned with another feature in the magneto-optics re-
earch: the electromagnetic (EM) scattering by magnetic
articles [1–5]. Although the EM scattering by particles is
well-documented topic [6–10], little attention has been

iven to the case of EM scattering by magnetic particles.
ecently, there has been a growing interest on photonic
andgap (PBG) materials made of ferromagnetic materi-
ls, like soft ferrites, at microwave or radio frequencies
11–14]. Other important applications involving magnetic

aterials, such as microwave filters, metamaterials, and
igh density magnetic recording media, have been re-
orted [15,16]. Here, the approach we follow is the classi-
al one for single Mie scattering [6,9,7,10], in which no ap-
lied external field is considered.
The EM radiation scattering by magnetic spheres is de-

cribed on the basis of the Mie theory, in which an inci-
ent plane wave, with wavenumber k, is scattered by a
omogeneous sphere of radius a. We assume that both the
catterer and the medium are non-magneto-optical active
nd that the incident radiation is a vectorial wave. In
eneral, the bulk of analysis takes place in far-field ap-
roximation, ignoring the evanescence and the internal
elds in the scattering center [6,7,9]. The interest, there-
ore, lies in the behavior of the scattered fields and all the
1084-7529/10/050992-10/$15.00 © 2
uantities of interest to describe EM scattering by spheri-
al particles, such as cross sections and the anisotropy
actor �cos �� (i.e., the mean value of the cosine of the scat-
ering angle �) can be expressed in terms of the Mie coef-
cients an and bn [9]. For magnetic scatterers, in particu-

ar, an and bn have been obtained by Kerker et al. [1].
evertheless, here, as in the original work of Bott and
dunkowski [17] for nonmagnetic spheres, the internal
elds in Mie single scattering gain special attention and
ome related quantities are studied.

Bott and Zdunkowski [17] presented the exact and ap-
roximate analytical expressions for the time-averaged
M energy within a dielectric sphere. The calculations
ave been anchored on the rigorous Mie theory, and the
xpressions have been derived, as usual, with the as-
umption of equality between the magnetic permeability
ensors of the medium and particle. This configuration is
enoted nonmagnetic scattering [1]. It is pointed out in
17] that those calculations are of importance for the
tudy of photochemical reactions within atmospheric wa-
er spheres.

The aim of this paper is to provide a detailed descrip-
ion of the time-averaged EM energy within magnetic
articles (assumed to be spherical), emphasizing their un-
sual properties, which in turn could be explored as mi-
rowave filters and PBGs [15] or in the search of photon
ocalization in the multiple scattering regime [4,5]. In
ection 2 a brief summary of the construction of the exact
olution in the single magnetic Mie scattering and its
rincipal analytical results are presented. Both the EM
nternal fields and the magnetic Mie coefficients are pre-
ented. The determination of the exact expression for the
ime-averaged EM energy within a magnetic scatterer is
hown in Section 3. The problem symmetry allows us to
010 Optical Society of America
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xpress separately the contribution of the radial and an-
ular components to the average internal energy. A new
xpression for the absorption cross section in the mag-
etic case is determined. To validate our expressions, for

nstance, we determine the same particular relations
tudied in [17]. Special attention is paid to our approach
oncerning the differences to [17]. Finally, we present
ome numerical results in Section 4. We compare the
agnetic and nonmagnetic scattering. The basic relations

nvolving the Bessel and associated Legendre functions
re presented in Appendix A. Those expressions are im-
ortant to the calculation of the quantities related to the
ime-averaged internal energy. In Appendix B, some clas-
ical limiting cases are considered and we give a set of ap-
roximated magnetic Mie coefficients.

. ANALYTICAL CALCULATION OF
CATTERING QUANTITIES
o deal with EM wave scattering by a single particle em-
edded in a medium, one must assume some special fea-
ures for the medium and the incident wave. Among these
ssumptions, the particle is considered isolated in an in-
nite medium, which allows one to ignore the effect of
ultiple scattering [6,7]. Both particle and medium are

onsidered linear, homogeneous, and isotropic, having in-
uctive capacities ��1 ,�1� and �� ,��, respectively. Thereby,
nce we assume that the media are non-magneto-optical
ctive, those tensors, respective to magnetic permeability
�� and electric permittivity ���, can be expressed by a
calar quantity times a unitary tensor. In particular, it is
ssumed that there are absorptive components within the
catterer, so the quantities �1 and �1 are complex.

The incident radiation is considered as a plane, mono-
hromatic, and polarized complex EM wave, which is ex-
ressed as

Ei�r,t� = E0 exp�ı�k · r − �t��, �1�

ith wave amplitude E0=E0ex and wave vector k=kez,
here k=2� /�, � is the wavelength, and � is the angular

requency. Due to the spherical symmetry of the scatter-
ng center, there is no loss of generality taking the electric
eld polarized on the x axis direction. Also, the linearity of
he macroscopic Maxwell’s equations and the Fourier
heory allow one to generalize this monochromatic case to
polychromatic one [6].
The incident, scattered, and internal vector waves have

he same angular frequency �, once we are not accounting
or possible energy variations in the interaction with the
catterer. Thus, quantum fluctuations such as in Raman
cattering are neglected, and a classical description is
dopted [6,7].
In the rigorous Mie theory it is quite common to as-

ume the equality between the magnetic permeability
ensors of the particle and medium. This consideration ig-
ores the most general case in which these complex ten-
ors are different. The absolute value of the magnetic per-
eability �1 can assume values much larger than �, as in

he case of soft ferromagnetic particles in the microwave
ange, for instance [2,11]. In this present work, the Mie
oefficients are recalculated in this general case, referred
o as magnetic scattering [1,3–5], and the associated Mie
oefficients of the internal fields, which have not been
tudied so far, are presented. The expressions obtained
ere are valid for a wide class of soft ferrites with mag-
etic loss. The assumption of the isotropic magnetic per-
eability (and electric permittivity) allows one to solve

he scattering problem in a simple way. However, to lower
he magnetic loss of these magnetic materials, it is usual
o consider them in the presence of an applied external
agnetic field [11–13,15,16]. In this situation, the rela-

ive magnetic permeability is anisotropic and its tensor
lements depend on this externally applied field.

From Maxwell’s theory, we have that a time-harmonic
M field (E, H) in a homogeneous, isotropic, and linear
edium must satisfy the vectorial Helmholtz equations

�2+k2�E=0, ��2+k2�H=0, where k2=−���t
2=�2��, and

e divergence-free null: � ·E=� ·H=0. The quantity �k�
k is the wavenumber and it is related to the traveling
ave. In addition, E and H are not independent: ��E
ı��H, ��H=−ı��E. To simplify the resolution of these
quations, we build solutions which are dependent of a
calar function �, called a generating function for the vec-
or harmonics [6,7]. In this particular case, once the sym-
etry of the problem is spherical, the solutions of the

quations above are the spherical vector harmonics, ex-
ressed by M=�� �r�� and N=��M /k. The imposition
f the vector harmonics as solutions of the Maxwell’s
quations implies that ��2+k2��=0. Thus, the problem of
he scattered waves by a spherical particle resumes to
olve this scalar Helmholtz equation in spherical coordi-
ates.
Another way to tackle this problem without considering

he vector harmonics employs the Hertz potential [9,18].
owever, we prefer to adopt the same framework of Bo-
ren and Huffman [6], in which the plane waves are di-
ectly expanded in terms of spherical vector harmonics.
he solution of the scalar Helmholtz equation is
nm�kr , cos � ,	�=zn�kr�Pn

m�cos ��exp�ım	�, where zn�kr�
s a generic Bessel spherical function and Pn

m�cos �� are
ssociated Legendre functions, and n is natural and m is
nteger. By means of �nm, we can readily derive the
pherical vector harmonics defined above. From the ex-
ansion of the incident fields in terms of Mnm and Nnm,
e find that only m=1 contributes to this new represen-

ation due to the spherical symmetry of the scatterer
6,7]. Using the boundary conditions of this problem, we
an express the internal and the scattered fields in terms
f spherical vector harmonics. Specifically, the coefficients
f these expansions are referred to as the Mie coefficients.
hey provide the information about the interaction be-

ween the incident wave and the spherical particle. Ex-
licitly, the boundary condition �r=a� is expressed by �Ei
Es−E1��er= �Hi+Hs−H1��er=0, where 1 is the index
elated to the particle (internal fields); i and s refer to the
ncident and scattered fields, respectively; and er is the
adial unity vector in the polar spherical coordinate sys-
em.

. Internal Fields
ssuming the incident EM wave is polarized in the ex di-

ection, and the scattering center is placed at the origin of
he coordinate system, we obtain an expression for the ex-
ansion of this field in terms of spherical harmonics. Im-



p
r
t
e
fi

w
v
s

w
g
�
c
w
b
U
fi

B
I
p
n
t
[

w
s
v
s
t


fi
f
a
u
c

a
H
m
l
t
w
d
o
p
t
c
(
q
c
i
t
f

3
E
F
c
s
t
s
i
r

o
a
i
p
t
v
�
m

994 J. Opt. Soc. Am. A/Vol. 27, No. 5 /May 2010 T. J. Arruda and A. S. Martinez
osing on the boundary between the sphere and the sur-
ounding medium the continuity of the EM fields—in fact,
heir (electrical and magnetic) tangential components—
xpressions are determined for the internal and scattered
elds [6,7,9].
Using the same notation of Bohren and Huffman [6],

e can give the components of the electric and magnetic
ectors, E1 and H1, respectively, of the interior field in a
pherical coordinate system �r ,� ,	� by

E1r =
− ı cos 	 sin�


1
2 �

n=1

�

Endn�n�
1�n�n + 1��n,

E1� =
cos 	


1
�
n=1

�

En�cn�n�n�
1� − ıdn�n�n��
1��,

E1	 =
sin 	


1
�
n=1

�

En�ıdn�n�n��
1� − cn�n�n�
1��,

H1r =
− ık1

��1

sin 	 sin �


1
2 �

n=1

�

Encn�n�
1�n�n + 1��n,

H1� =
k1

��1

sin 	


1
�
n=1

�

En�dn�n�n�
1� − ıcn�n�n��
1��,

H1	 =
k1

��1

cos 	


1
�
n=1

�

En�dn�n�n�
1� − ıcn�n�n��
1��,

ith 
1=k1r, En= ınE0�2n+1� / �n�n+1��, �n and �n are an-
ular functions defined in Appendix A, Section A 2 and
n�
1�=
1jn�
1� is a Ricatti–Bessel function. The functions
n and dn are the internal magnetic Mie coefficients,
hich are presented in the section below. We outline that,
ecause of the notation [units in International System of
nits (SI) and time factor] adopted here, the internal EM
eld �E1 ,H1� is not the same as that presented in [17].

. Magnetic Mie Coefficients
f we do not assume the equality between � and �1 on the
roblem boundary condition, we can determine the mag-
etic Mie coefficients for the scattering (an and bn, ob-
ained by Kerker et al. [1]) and internal (cn and dn) fields
1–5]. Explicitly,

an =
m̃�n�mx��n��x� − �n�x��n��mx�

m̃�n�mx�
n��x� − 
n�x��n��mx�
, �2�

bn =
�n�mx��n��x� − m̃�n�x��n��mx�

�n�mx�
n��x� − m̃
n�x��n��mx�
, �3�

cn =
mı

�n�mx�
n��x� − m̃
n�x��n��mx�
, �4�
dn =
mı

m̃�n�mx�
n��x� − 
n�x��n��mx�
, �5�

ith the assumption that the function domains are re-
tricted in such a manner that the denominators do not
anish. The quantity x=ka is the size parameter of the
pherical particle, with a being its radius and k= �k� being
he wavenumber of incident and scattered waves, and
n�x�=x�jn�x�+ ıyn�x�� is the Ricatti–Hankel function of
rst kind. In addition, m= ��1�1 /���1/2 is the relative re-
raction index and m̃= ���1 /�1��1/2 is the relative imped-
nce between the media. For �=�1, then m̃=m and the
sual expressions for the Mie coefficients (2)–(5) are re-
overed [6,7,9].

There are some notation differences between this work
nd the one presented by Bott and Zdunkowski [17].
ere, we use the same framework of Bohren and Huff-
an [6], which have treated the scattering problem of

ight by means of SI and have adopted exp�−ı�t� as the
ime-harmonic dependency for the fields. Otherwise [17],
e have used the same notation of van de Hulst [7], who
ealt with the scattering problem in the Gaussian system
f units, and adopted exp�ı�t� as the time-harmonic de-
endency. These approach differences appear explicitly in
he choice of the Hankel functions, which is strictly asso-
iated with the asymptotic limit for the scattered fields
the well-known far-field approximation), and conse-
uently determine the dependencies of the Mie coeffi-
ients. Another difference between these representations
s related to the signal of the imaginary part of the rela-
ive refraction index m=mr+ ımi, which is positive in the
ramework we have chosen [6,7].

. TIME-AVERAGED ELECTROMAGNETIC
NERGY
or a linear, homogeneous, and isotropic medium, the
lassical theory of electromagnetism provides an expres-
ion for the time-averaged EM energy as an integral of
he component intensities within the volume under analy-
is. In the case of a spherical particle with radius a and
nternal complex EM field �E1 ,H1�, we have the following
elation [17,19]:

W�a� =	
0

2�

d		
−1

1

d�cos ��	
0

a

drr2 Re
 �1

4
��E1r�2 + �E1��2

+ �E1	�2� +
�1

4
��H1r�2 + �H1��2 + �H1	�2�� . �6�

In Eq. (6), with respect to the field representations, we
utline that the permutation between a definite integral
nd a sum of an infinite series is not trivial. In the follow-
ng calculations, we are not concerned about showing ex-
licitly each one of the simplifications; we just assume
hat the function series related to the field intensities con-
erge uniformly in the domain 0�r�a, 0����, 0�	
2�. Obviously, this mathematical condition is in agree-
ent that the energy within a finite sphere is also finite.
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. Electric and Magnetic Internal Fields
ooking closely to the definition of Eq. (6), one can ask
bout the contribution to the total internal energy associ-
ted with electric and magnetic fields separately, or even
bout the contribution of their field components in spheri-
al coordinates �r ,� ,	� to this average energy. These
uestions have not addressed by Bott and Zdunkowski in
heir paper [17].

. Radial Component
rom Eq. (6), we obtain that the contribution of the radial
omponent associated with the electric field to the inter-
al energy is given by

WrE�a� =
Re��1�

4 �
−1

1

d�cos ���
0

2�

d��
0

a

drr2�E1r�2

=
�

4
Re��1��

0

a

dr�
n=1

�

�
n�=1

�

EnEn�
� jn��1�jn�

� ��1�
dndn�

�

�k1�2

�nn��n + 1��n� + 1��
−1

1

d�cos ��

Eq. �A5�

sin2 ��n�n�

=
�

2
�E0�2

Re��1�

�k1�2 �
n=1

�

n�n + 1��2n + 1�

��dn�2�
0

a

dr�jn��1��2. �7�

roceeding in the same way, one derives an analogous ex-
ression for the radial component related to the magnetic
eld,

WrH�a� =
�

2
�E0�2

Re��1
−1�

�2 �
n=1

�

n�n + 1��2n + 1�

��cn�2	
0

a

dr�jn�
1��2. �8�

n important point to be noted here is that the integral
bove cannot be simplified by means of Eq. (A1) and re-
urrence relations presented in Appendix A, Section A 1.

. Angular Components
ecause of the spherical symmetry of the system, it is not
ossible to write the contributions of the angular and azi-
uthal components to internal energy separately. If one

ries to do that, the necessary relations to simplify the
ouble sums, as exemplified in Eq. (7), do not appear. For-
unately, if one considers both �� ,	� contributions to in-
ernal energy, these relations are not lost. Thus, using re-
ations (A3) and (A4) from Appendix A, Section A 2 and
he first term of Eq. (6), it follows that the time-averaged
nergy associated with angular components of the electric
eld is expressed by
�W�E + W	E��a� =
Re��1�

4 	
−1

1

d�cos ��	
0

2�

d		
0

a

drr2

���E1��2 + �E1	�2�

=
�

2
�E0�2

Re��1�

�k1�2 �
n=1

�

�2n + 1�	
0

a

dr��cn�n�
1��2

+ �dn�n��
1��2�. �9�

Similarly, for the magnetic field we obtain

�W�H + W	H��a� =
�

2
�E0�2

Re��1
−1�

�2

��
n=1

�

�2n + 1�	
0

a

dr��dn�n�
1��2

+ �cn�n��
1��2�.

ere, the same problem of the expression Wr�a� arises.
hereas the integral of the Ricatti–Bessel function is

nly another way to write Eq. (A1), the second integral
bove cannot be simplified.

. Time-Averaged Internal Energy
rom the expressions obtained in the previous section for
ach one of the internal field components, we can calcu-
ate the total time-averaged energy inside the sphere. For
he internal electric field, the expression is

WE�a� = WrE�a� + �W�E + W	E��a�

=
3

4
W0 Re�mm̃��

n=1

�

��2n + 1��cn�2In�y� + �dn�2

��nIn+1�y� + �n + 1�In−1�y��
, �11�

here

In�y� =
1

a3	
0

a

drr2�jn�
1��2 �12�

s given by Eq. (A1) and W0 denotes the time-averaged
M energy of a sphere with radius a having the same EM
roperties of the surrounding medium,

W0 =
2

3
�a3�E0�2�. �13�

or the sake of simplicity, the dependence of In with re-
pect to y�=m�ka, like the case of the function W
W�a ,y ,y��, is omitted.
In the same way, for the internal magnetic field, the av-

rage internal energy is given by

WH�a� = WrH�a� + �W�H + W	H��a�

=
3

4
W0 Re�mm̃���

n=1

�

��2n + 1��dn�2In�y�

+ �cn�2�nIn+1�y� + �n + 1�In−1�y��
. �14�

nce we have expressions for electric and magnetic ener-
ies within a sphere, it is possible to determine the ex-
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ression for the total time-averaged EM energy inside the
catterer: W�a�=WE�a�+WH�a�. Explicitly,

W�a� =
3

4
W0�

n=1

�

��n�y��−2�n�nIn+1�y� + �n + 1��nIn−1�y�

+ �2n + 1��nIn�y��, �15�

here

�n = ��n�y��2�Re�mm̃��cn�2 + Re�mm̃���dn�2�, �16�

�n = ��n�y��2�Re�mm̃��dn�2 + Re�mm̃���cn�2�. �17�

lso, to obtain analogous expressions to the ones pre-
ented in [17], Eq. (15) can be rewritten as

W�a� =
3

4
W0�

n=1

� 2n + 1

y2 − y�2��n
An�y��

y
−

An�y�

y� �
+ �n
An�y��

y�
−

An�y�

y �� , �18�

ith y=mka and An�y�=dy ln ��y�.

. Dielectric Sphere
particular situation to be considered here refers to a di-

lectric sphere, which has studied by Bott and
dunkowski [17]. With this aim, consider the nonmag-
etic case, i.e., �=�1. Thereby, it results that m=m̃
��1 /��1/2. With this assumption, note that Re�m2�= �m2

m�2� /2 and Re�mm��= �m�2. Substituting these into Eqs.
16) and (17), the expression for the internal energy ob-
ained by Bott and Zdunkowski is recovered. Once again,
e emphasize that our notation is not the same as that
mployed in [17]. Indeed, we can recover the same results
y means of the following substitutions: 
n�x�→�n�x�,
n→mdn, dn→mcn, and assuming m=m̃. Here, �n�x�
x�jn�x�− ıyn�x�� is the Ricatti–Hankel function of the sec-
nd kind, which is related to the choice of the time-
armonic dependence for the EM fields, like it is men-
ioned in the beginning of this description [6–10].

Employing the recurrence relations involving Bessel
pherical functions [20,21], we obtain the derivative of
rst order An��y�=−1−An

2�y�+n�n+1� /y2. Therefore, using
he L’Hospital rule, the limiting case of a perfect dielectric
phere, which takes place when mi→0, provides
y2 limmi→0 W�a�=3W0�n=1

� �n�2n+1��1+An
2�y�−n�n

1� /y2�, where �n=m2��n�y��2��cn�2+ �dn�2�. Except for some
ommented notation differences, this result is the same as
hat obtained in [17].

. Absorption Cross Section
he classical Mie theory provides a set of useful expres-
ions to calculate the scattering, total, and absorption
ross sections in the scattering process. Explicitly, call
sca the scattering cross section and �tot the extinction (or
otal) cross section. Using the same framework of [6], one
an write
�sca =
2�

k2 �
n=1

�

�2n + 1���an�2 + �bn�2�, �19�

�tot =
2�

k2 �
n=1

�

�2n + 1�Re�an + bn
. �20�

Consequently, the absorption cross section �abs associ-
ted with the scatterer is defined in terms of �sca and �tot
y the relation �abs=�tot−�sca. In other words, the absorp-
ion cross section in the Mie single scattering is deter-
ined by quantities and coefficients related only to the

cattered EM fields [6,7,9]. Although it is suitable and
ven natural to express the absorption cross section in
erms of the internal coefficients cn and dn, notice that we
o not do any reference to the internal EM fields.
From the boundary conditions in the sphere problem

6], the Mie coefficients are linked by the following equa-
ions below:

hn
�1��x�bn = jn�x� − jn�mx�cn, �21�

hn
�1��x�an = jn�x� − m̃jn�mx�dn. �22�

hus, substituting the coefficients an and bn into �abs
�tot−�sca and manipulating that, we obtain the following
xpression respective to the absorption cross section:

�abs =
2�

k2 �
n=1

�

�2n + 1��Re
�n�mx�

m
n
��x�

�cn + m̃dn��
−

��n�mx��2

�m
n�x��2
��cn�2 + �m̃dn�2�� . �23�

inally, using the definition of cn and dn given by Eqs. (4)
nd (5) and the fact that Re�−i
n

��x�
n��x��=�n�x��n��x�
�n�x��n��x�=1, where �n�x�=−xyn�x� is the Ricatti–
eumann function, we obtain

�abs =
2�

k2 �
n=1

�

�2n + 1���cn�2 + �dn�2�Im
 m̃

�m�2
�n�y��n��y��� .

�24�

he exact expression (24) for the magnetic absorption
ross section in terms of the internal Mie coefficients is
ot found in the classical books of the scattering theory
6,7,9] and it had not been determined so far.

. NUMERICAL RESULTS
n this section we present some numerical analysis from
he exact equations determined in the sections above. Our
im is not to restrict our studies in some particular case of
agnetic scattering, but to introduce a general formula-

ion of the internal energy which can be used whether in
agnetic case ����1� or in nonmagnetic one ��=�1�.
ere, all numerical results are obtained by means of a
rogram created by us using the free software for scien-
ific computation, Scilab 5.1.1. As usual in the numerical
ie scattering, rather than to do infinite sums in �n=1

� in
he calculation of the scattering quantities, which is im-
ossible, we assume an approximation: finite sums with
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he upper limit nmax=x+4x1/3+2, where x is the size pa-
ameter [8].

. Normalized Quantities
or numerical studies, it is suitable to define dimension-

ess quantities related to the internal energy and the Mie
oefficients,

WE
norm�m,m̃,ka� =

WE�m,m̃,ka;�,a�

W0��,a�
, �25�

WH
norm�m,m̃,ka� =

WH�m,m̃,ka;�,a�

W0��,a�
, �26�

here WE, WH, and W0 are expressed by Eqs. (11), (14),
nd (13), respectively. The dependence of WE and WH on
he quantity m� is omitted. Therefore, one can define the
ormalization of the total time-averaged internal energy
y the relation Wtot

norm=WE
norm+WH

norm or directly from
q. (18): Wtot

norm�m ,m̃ ,ka�=W�a� /W0.
Also, from [21], we can obtain the recurrence relation

2n+1�2�jn�
1��2= �
1�2��jn−1�
1��2+ �jn+1�
1��2

2 Re�jn−1�
1�jn+1�
1
���
; thus, Eq. (7) can be rewritten as

WrE�a�

W0
=

3

4
Re�mm̃��

n=1

� n�n + 1�

2n + 1
�dn�2�In−1�y� + In+1�y�

+
2

a3	
0

a

drr2 Re�jn−1�
1�jn+1�
1
���� . �27�

ote that the integral that appears in the sum above is
uite similar to that one expressed in Eq. (A1). Although
his one cannot be simplified by means of Eq. (A1), it is
ossible to show numerically that the result of this inte-
ral is proportional to a3. It means that we can study the
adial contribution to the internal energy normalized by

0 using only the dimensionless parameters m, m̃, and
a. The same argument can be applied to both �W�E
W	E��a� /W0 and the analogous expressions respective to

he internal magnetic field, given by Eqs. (8) and (10).
In the situations considered here, the values of Re�mm̃�

nd Re�mm̃�� are very close in such a way that WE�a�
WH�a�. Thus, we only consider the total time-averaged

nternal energy in our analysis. Further, we remark that,
lthough in these studies the relative magnetic perme-
bility is assumed to be real, there is no such a restriction
n the calculated expressions. For soft microwave ferrites,

more realistic study should consider the magnetic loss.
Figures 1 and 2 illustrate a succession of narrower

icks of the values of the normalized internal energy in
ingle magnetic Mie scattering as a function of the size
arameter and relative magnetic permeability. Here, we
re not concerned about studying in detail the resonances
icks and ripple structure due to the internal coefficients
n and dn [17,22,23]. The internal energy of a magnetic
phere presents resonances peaks even in the limit of
mall geometric size (compared to the wavelength). These
esonances are due to the increase in the total cross sec-
ion due to magnetism. This increase leads to a decrease
n the photon mean free path in multiple scattering re-
ime in a disordered system. The smaller mean free path
avors the localization phenomenon as pointed in [3–5].
or dielectric spheres, these narrower resonance picks
re well known and they are referred to as morphology-
ependent-resonances (MDRs) [24]. In the Mie theory, for
arge size parameters, these MDRs are commonly ob-
erved at the scattered and internal intensities and at the
otal cross section.

In our system, observe that when one increases the
ontribution of the magnetism in the scatterer, the values
f the internal energy W�a� become much larger than W0,
nd the narrower picks appear even for small size param-
ters. In the nonmagnetic case reported in [17], there is
n opposite tendency, that is, both the internal energy
nd the absorption efficiency enhance with the size pa-
ameter. This difference between a nonmagnetic case and
magnetic one is illustrated in Fig. 3. This is due to the

ncrease in the total cross section even though geometri-
ally the scatterer is much smaller compared to the wave-
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ength. In other words, the incident EM wave interacts
trongly with the optical cross section instead of the geo-
etrical one [2–5].
It must be mentioned that this assumption of a nonab-

orptive magnetic diffuser is conditioned to the frequency
ange of the incident beam. Usually, it is controlled with
n external static magnetic field [11–13,15]. Indeed, there
s a wide variety of soft ferrites which exhibit very large
alues of relative magnetic permeability at applied fre-
uencies typically below 100 MHz with low magnetic loss
11]. For the sake of simplicity and generality, the situa-
ions considered here do not take into account the scat-
erer in the magnetized state, and a scalar value for the
1/� is adopted (Fig. 4). The dependence on the angular

requency � of the incident EM wave remains implicit on
he value of the size parameter ka. Given a value of � for
he incident EM wave, a surrounding medium �� ,��, and

scatter ��1 ,�1�, one readily obtains k=�����1/2 and k1
mk.
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. Weak Absorption Regime
n the weak absorption regime, the relation between the
ime-averaged internal energy and the absorption effi-
iency is quite evident when we compare them as shown
n Fig. 5. This correlation between these quantities in
onmagnetic scattering has been studied in [17].
Analytically, for mi�mr and m̃i�m̃r, we can write y2

y�2�4ıx2mrmi, Re�mm̃��mrm̃r, and Re�mm̃���mrm̃r.
sing these approximations in Eq. (18), it follows that

Wwa�a� �
3

8
W0

mr

mi

2m̃r

x3mr
2�

n=1

�

�2n + 1�

���cn�2 + �dn�2�Im��n�y��n��y���. �28�

nce the absorption efficiency in the Mie single scattering
s defined by Qabs=�abs/�g, where �g=�a2 is the geomet-
ic cross section and �abs is expressed in Eq. (24), we can
rite

Wwa�a� �
3

8
W0

mr

mix
Qabs, �29�

hich is the same relation obtained in [17] in the non-
agnetic case. Indeed, this approximation is valid wher-

ver mi�mr and m̃i�m̃r; it is not affected by the value of
1 /�.
In addition, for the case in which mr�1, one obtains
wa�a��W0. Therefore, in this particular situation, one

an write Qabs�8x / �3mi�, which is a well-known expres-
ion [7,17].

. CONCLUSION
n this paper we generalize the exact expression of the
ime-averaged EM internal energy, obtained first in [17],
o the case of magnetic spherical scatterers. Using the
ame framework of [6] and assuming the magnetic scat-
ering approach [1], we determine analytical expressions
or the contributions to the EM internal energy related to
he field components separately. The expressions for the
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M internal energy within a dielectric sphere and the re-
ation derived in [17] in the weak absorption regime be-
ween the internal energy and the absorption efficiency
re recovered. Especially, we find that the magnetism of
he particle does not break the linear relation between the
bsorption efficiency and the size parameter. To do so, we
nalytically calculate an expression for the absorption ef-
ciency, which depends only on the internal magnetic Mie
oefficients. In addition, we calculate the limiting cases of
he magnetic Mie coefficients and present some important
roperties of the radial functions which are used to sim-
lify the obtained expressions. Finally, the main result of
his work is that, even for small scatterers compared to
he wavelength, the value of the EM internal energy
ithin a magnetic sphere is much larger than the one as-

ociated with a sphere with the same properties of the
urrounding medium. Physically, we ascribe this fact to
he enhancement of the total cross section due to the mag-
etism in the scatterer.

PPENDIX A: SPECIAL FUNCTIONS
. Radial Functions
or the situation in which mi�0 is verified, that is, the

maginary part of the relative refraction index (absorptive
omponent) is not null, we can write

	
0

a

r2�jn�
1��2dr =
a3�y�jn�y�jn��y�� − yjn�y��jn��y��

y2 − y�2

= 2a3�jn�y��2Re
 �n�y��

y2 − y�2� , �A1�

here 
1=mkr, y=mka, and �n�y�=ydy�ln �n�y��. Equa-
ion (A1) is provided, in terms of Bessel cylindrical func-
ions, by Watson [20]. In the present context, to treat only
ith spherical Bessel functions, we have used the relation

2
1 /��1/2jn�
1�=Jn+1/2�
1� [20]. Also, if the relative refrac-
ion index m is real, according to [20], the integral in
q. (A1) can be simply rewritten as

	
0

a

r2jn
2�
1�dr =

a3

2
�jn

2�y� − jn−1�y�jn+1�y��, �A2�

hich is obtained by taking the limiting mi→0 in
q. (A1) and using the L’Hospital rule and recurrence re-

ations.

. Angular Functions
n the expansion of EM fields, it becomes natural to define
he angular functions �n�cos ��=Pn

1�cos �� /sin � and
n�cos ��=dPn

1�cos �� /d�, where � is the scattering angle
nd Pn

1 is an associated Legendre function of first order.
hese angular functions are quite convenient in the cal-
ulation of field intensities.

Due to properties involving the associated Legendre
unctions, �n and �n satisfy the following expressions,
n ,n �IN:
�
	
−1

1

d�cos ����n�n� + �n�n�� =
2n2�n + 1�2

2n + 1
�n,n�, �A3�

	
−1

1

d�cos ����n�n� + �n�n�� = 0, �A4�

	
−1

1

d�cos ���n�n� sin2 � =
2n�n + 1�

2n + 1
�n,n�. �A5�

hese expressions facilitate the determination of quanti-
ies involving field intensities. We emphasize that, in the
lassical books of scattering theory, Eq. (A5) is not found
n this explicit form [6,7,9].

PPENDIX B: LIMITING CASES
n these particular cases, we remark that n=1 is suffi-
ient to study the nonmagnetic scattering theory. Here,
e imperatively have to consider n=1 and 2 to keep con-

istent orders in the Mie coefficients.

. Small Particle Limit
or the small argument limit into the Mie scattering co-
fficients, we obtain

a1 �
ıx3

3

�1�mx� − 2mm̃

�1�mx� + mm̃
−

ıx5

5

��1�mx� − mm̃�2 − mm̃�1�mx�

��1�mx� + mm̃�2

+
x6

9 
�1�mx� − 2mm̃

�1�mx� + mm̃ �2

+ O�x7�, �B1�

b1 �
ıx3

3

�1�mx� − 2m/m̃

�1�mx� + m/m̃

−
ıx5

5

��1�mx� − m/m̃�2 − �m/m̃��1�mx�

��1�mx� + m/m̃�2

+
x6

9 
�1�mx� − 2m/m̃

�1�mx� + m/m̃ �2

+ O�x7�, �B2�

a2 �
ıx5

45

�2�mx� − 3mm̃

�2�mx� + 2mm̃
+ O�x7�, �B3�

b2 �
ıx5

45

�2�mx� − 3m/m̃

�2�mx� + 2m/m̃
+ O�x7�. �B4�

or the Mie internal coefficients, the approximations as-
ume the following forms below:
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1 �
mx2

�1�mx�

m/m̃

��1�mx� + m/m̃�
�B5�

−
mx4

�1�mx�

�m/m̃���1�mx� − m/m̃�

2��1�mx� + m/m̃�2
+ O�x5�, �B6�

1 �
�m/m̃�x2

�1�mx�

mm̃

��1�mx� + mm̃�
�B7�

−
�m/m̃�x4

�1�mx�

mm̃��1�mx� − mm̃�

2��1�mx� + mm̃�2
+ O�x5�, �B8�

2 �
m

3�2�mx�

�m/m̃�x3

��2�mx� + 2m/m̃�
+ O�x5�, �B9�

2 �
�m/m̃�

3�2�mx�

mm̃x3

��2�mx� + 2mm̃�
+ O�x5�. �B10�

ote that, for these approximations, the scattering coeffi-
ients a1, a2, b1, and b2 have order O��ka�7�, whereas the
nternal coefficients c1, c2, d1, and d2 are O��ka�5�. Terms
or n�2 are ignored here.

. Rayleigh Approximation
n this approximation, in which �m�x�1, the Mie scatter-
ng coefficients can be written as

a1 �
− 2ıx3

3

mm̃ − 1

mm̃ + 2
−

ıx5

5

m3m̃ − 6mm̃ + �mm̃�2 + 4

�mm̃ + 2�2

+
4x6

9 �mm̃ − 1

mm̃ + 2�
2

+ O�x7�, �B11�

b1 �
− 2ıx3

3

m/m̃ − 1

m/m̃ + 2
−

ıx5

5

m3m̃ − 6m/m̃ + �m/m̃�2 + 4

�m/m̃ + 2�2

+
4x6

9 �m/m̃ − 1

m/m̃ + 2�
2

+ O�x7�, �B12�

a2 �
− ıx5

15

mm̃ − 1

2mm̃ + 3
+ O�x7�, �B13�

b2 �
− ıx5

15

m/m̃ − 1

2m/m̃ + 3
+ O�x7�, �B14�

nd the Mie internal coefficients assume the forms

c1 �
3

2m̃ + m
1 +
�mx�2

10 � −
3x2

2 
1 +
�mx�2

10 � �2m̃ − m�

�2m̃ + m�2

+ O�x5�, �B15�

d1 �
3

2 + mm̃
1 +
�mx�2

10 � −
3x2

2 
1 +
�mx�2

10 � �2 − mm̃�

�2 + mm̃�2

+ O�x5�, �B16�
c2 �
5

mm̃�3 + 2m/m̃�
+ O�x5�, �B17�

d2 �
5

m�3 + 2mm̃�
+ O�x5�. �B18�

aking the particular case m=m̃, Mie coefficients for non-
agnetic scattering are recovered [6].

. Ferromagnetic Limit for x™1
his approximation, similar to the Rayleigh limit, is de-
ived directly from the approximation of small spheres
ompared to wavelength. Using the expressions for large
rgument limit present in [25], one can obtain

a1 �
ıx3

3

x tan�mx� + 2m̃

x tan�mx� − m̃

−
ıx5

5

�x tan�mx� + m̃�2 + m̃x tan�mx�

�x tan�mx� − m̃�2

+
x6

9 
x tan�mx� + 2m̃

x tan�mx� − m̃ �2

+ O�x7�, �B19�

b1 �
ıx3

3

m̃x tan�mx� + 2

m̃x tan�mx� − 1

−
ıx5

5

�m̃x tan�mx� + 1�2 + m̃x tan�mx�

�m̃x tan�mx� − 1�2

+
x6

9 
 m̃x tan�mx� + 2

m̃x tan�mx� − 1�2

+ O�x7�, �B20�

a2 �
ıx5

45

x − 3m̃ tan�mx�

x + 2m̃ tan�mx�
+ O�x7�, �B21�

b2 �
ıx5

45

m̃x − 3 tan�mx�

m̃x + 2 tan�mx�
+ O�x7�. �B22�

he internal coefficients are

c1 �
m

cos�mx�

x2

�m̃x tan�mx� − 1�

−
mx4

2 cos�mx�

�m̃x tan�mx� + 1�

�m̃x tan�mx� − 1�2
+ O�x5�, �B23�

d1 �
m

cos�mx�

x2

�x tan�mx� − m̃�

−
mx4

2 cos�mx�

�x tan�mx� + m̃�

�x tan�mx� − m̃�2
+ O�x5�, �B24�
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c2 �
− m

3 cos�mx�

x3

�2 tan�mx� + m̃x�
+ O�x5�, �B25�

d2 �
− m

3 cos�mx�

x3

�2m̃ tan�mx� + x�
+ O�x5�. �B26�

n this case, since low order in the size parameter is used,
ne can obtain an analytical expression for the physical
uantities, such as cross sections, for instance.
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