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Electromagnetic energy within magnetic spheres
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Consider that an incident plane wave is scattered by a homogeneous and isotropic magnetic sphere of finite
radius. We determine, by means of the rigorous Mie theory, an exact expression for the time-averaged electro-
magnetic energy within this particle. For magnetic scatterers, we find that the value of the average internal
energy in the resonance picks is much larger than the one associated with a scatterer with the same nonmag-
netic medium properties. This result is valid even, and especially, for low size parameter values. Expressions
for the contributions of the radial and angular field components to the internal energy are determined. For the
analytical study of the weak absorption regime, we derive an exact expression for the absorption cross section
in terms of the magnetic Mie internal coefficients. We stress that, although the electromagnetic scattering by
particles is a well-documented topic, almost no attention has been devoted to magnetic scatterers. Our aim is
to provide some new analytical results, which can be used for magnetic particles, and emphasize the unusual
properties of the magnetic scatters, which could be important in some applications. © 2010 Optical Society of
America
OCIS codes: 290.0290, 290.4020, 290.5825, 290.5850.
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1. INTRODUCTION

The research in magneto-optics, both theoretical and ex-
perimental, has been mainly devoted to the study of mag-
netic properties of thin films. Magneto-optical effects are
characterized by the change in the state of light polariza-
tion in the presence of magnetic materials, both in trans-
mission (Faraday effect) and reflection (Kerr effect). Bril-
louin light scattering technique allows the investigation
of spin waves in magnetic films and layered structures
through the light scattering by magnons. Here, we are
concerned with another feature in the magneto-optics re-
search: the electromagnetic (EM) scattering by magnetic
particles [1-5]. Although the EM scattering by particles is
a well-documented topic [6-10], little attention has been
given to the case of EM scattering by magnetic particles.
Recently, there has been a growing interest on photonic
bandgap (PBG) materials made of ferromagnetic materi-
als, like soft ferrites, at microwave or radio frequencies
[11-14]. Other important applications involving magnetic
materials, such as microwave filters, metamaterials, and
high density magnetic recording media, have been re-
ported [15,16]. Here, the approach we follow is the classi-
cal one for single Mie scattering [6,9,7,10], in which no ap-
plied external field is considered.

The EM radiation scattering by magnetic spheres is de-
scribed on the basis of the Mie theory, in which an inci-
dent plane wave, with wavenumber £, is scattered by a
homogeneous sphere of radius a. We assume that both the
scatterer and the medium are non-magneto-optical active
and that the incident radiation is a vectorial wave. In
general, the bulk of analysis takes place in far-field ap-
proximation, ignoring the evanescence and the internal
fields in the scattering center [6,7,9]. The interest, there-
fore, lies in the behavior of the scattered fields and all the
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quantities of interest to describe EM scattering by spheri-
cal particles, such as cross sections and the anisotropy
factor (cos 6) (i.e., the mean value of the cosine of the scat-
tering angle ) can be expressed in terms of the Mie coef-
ficients a,, and b,, [9]. For magnetic scatterers, in particu-
lar, a,, and b, have been obtained by Kerker et al. [1].
Nevertheless, here, as in the original work of Bott and
Zdunkowski [17] for nonmagnetic spheres, the internal
fields in Mie single scattering gain special attention and
some related quantities are studied.

Bott and Zdunkowski [17] presented the exact and ap-
proximate analytical expressions for the time-averaged
EM energy within a dielectric sphere. The calculations
have been anchored on the rigorous Mie theory, and the
expressions have been derived, as usual, with the as-
sumption of equality between the magnetic permeability
tensors of the medium and particle. This configuration is
denoted nonmagnetic scattering [1]. It is pointed out in
[17] that those calculations are of importance for the
study of photochemical reactions within atmospheric wa-
ter spheres.

The aim of this paper is to provide a detailed descrip-
tion of the time-averaged EM energy within magnetic
particles (assumed to be spherical), emphasizing their un-
usual properties, which in turn could be explored as mi-
crowave filters and PBGs [15] or in the search of photon
localization in the multiple scattering regime [4,5]. In
Section 2 a brief summary of the construction of the exact
solution in the single magnetic Mie scattering and its
principal analytical results are presented. Both the EM
internal fields and the magnetic Mie coefficients are pre-
sented. The determination of the exact expression for the
time-averaged EM energy within a magnetic scatterer is
shown in Section 3. The problem symmetry allows us to
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express separately the contribution of the radial and an-
gular components to the average internal energy. A new
expression for the absorption cross section in the mag-
netic case is determined. To validate our expressions, for
instance, we determine the same particular relations
studied in [17]. Special attention is paid to our approach
concerning the differences to [17]. Finally, we present
some numerical results in Section 4. We compare the
magnetic and nonmagnetic scattering. The basic relations
involving the Bessel and associated Legendre functions
are presented in Appendix A. Those expressions are im-
portant to the calculation of the quantities related to the
time-averaged internal energy. In Appendix B, some clas-
sical limiting cases are considered and we give a set of ap-
proximated magnetic Mie coefficients.

2. ANALYTICAL CALCULATION OF
SCATTERING QUANTITIES

To deal with EM wave scattering by a single particle em-
bedded in a medium, one must assume some special fea-
tures for the medium and the incident wave. Among these
assumptions, the particle is considered isolated in an in-
finite medium, which allows one to ignore the effect of
multiple scattering [6,7]. Both particle and medium are
considered linear, homogeneous, and isotropic, having in-
ductive capacities (e, 1) and (e, u), respectively. Thereby,
once we assume that the media are non-magneto-optical
active, those tensors, respective to magnetic permeability
(u) and electric permittivity (e), can be expressed by a
scalar quantity times a unitary tensor. In particular, it is
assumed that there are absorptive components within the
scatterer, so the quantities €; and w; are complex.

The incident radiation is considered as a plane, mono-
chromatic, and polarized complex EM wave, which is ex-
pressed as

E;(r,t)=Ej explt(k-r - wt)], (1)

with wave amplitude Eq=Eqe, and wave vector k=~ke,,
where k=27/\, \ is the wavelength, and w is the angular
frequency. Due to the spherical symmetry of the scatter-
ing center, there is no loss of generality taking the electric
field polarized on the x axis direction. Also, the linearity of
the macroscopic Maxwell’s equations and the Fourier
theory allow one to generalize this monochromatic case to
a polychromatic one [6].

The incident, scattered, and internal vector waves have
the same angular frequency w, once we are not accounting
for possible energy variations in the interaction with the
scatterer. Thus, quantum fluctuations such as in Raman
scattering are neglected, and a classical description is
adopted [6,7].

In the rigorous Mie theory it is quite common to as-
sume the equality between the magnetic permeability
tensors of the particle and medium. This consideration ig-
nores the most general case in which these complex ten-
sors are different. The absolute value of the magnetic per-
meability u; can assume values much larger than u, as in
the case of soft ferromagnetic particles in the microwave
range, for instance [2,11]. In this present work, the Mie
coefficients are recalculated in this general case, referred
to as magnetic scattering [1,3-5], and the associated Mie
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coefficients of the internal fields, which have not been
studied so far, are presented. The expressions obtained
here are valid for a wide class of soft ferrites with mag-
netic loss. The assumption of the isotropic magnetic per-
meability (and electric permittivity) allows one to solve
the scattering problem in a simple way. However, to lower
the magnetic loss of these magnetic materials, it is usual
to consider them in the presence of an applied external
magnetic field [11-13,15,16]. In this situation, the rela-
tive magnetic permeability is anisotropic and its tensor
elements depend on this externally applied field.

From Maxwell’s theory, we have that a time-harmonic
EM field (E, H) in a homogeneous, isotropic, and linear
medium must satisfy the vectorial Helmholtz equations
[V2+E2]E=0, [V2+Ek%JH=0, where k%=—eud’=w?eu, and
be divergence-free null: V-E=V-H=0. The quantity |k
=k is the wavenumber and it is related to the traveling
wave. In addition, E and H are not independent: VXE
=touH, VXH=-1weE. To simplify the resolution of these
equations, we build solutions which are dependent of a
scalar function ¢, called a generating function for the vec-
tor harmonics [6,7]. In this particular case, once the sym-
metry of the problem is spherical, the solutions of the
equations above are the spherical vector harmonics, ex-
pressed by M=V X (r¢)) and N=V XM/k. The imposition
of the vector harmonics as solutions of the Maxwell’s
equations implies that [V2+%£2]y=0. Thus, the problem of
the scattered waves by a spherical particle resumes to
solve this scalar Helmholtz equation in spherical coordi-
nates.

Another way to tackle this problem without considering
the vector harmonics employs the Hertz potential [9,18].
However, we prefer to adopt the same framework of Bo-
hren and Huffman [6], in which the plane waves are di-
rectly expanded in terms of spherical vector harmonics.
The solution of the scalar Helmholtz equation is
Yum(kr,cos 0, p)=z,(kr)P)(cos fexp(tm¢), where z,(kr)
is a generic Bessel spherical function and P}’(cos 6) are
associated Legendre functions, and n is natural and m is
integer. By means of ¢,,, we can readily derive the
spherical vector harmonics defined above. From the ex-
pansion of the incident fields in terms of M,,,, and N,,,,,
we find that only m=1 contributes to this new represen-
tation due to the spherical symmetry of the scatterer
[6,7]. Using the boundary conditions of this problem, we
can express the internal and the scattered fields in terms
of spherical vector harmonics. Specifically, the coefficients
of these expansions are referred to as the Mie coefficients.
They provide the information about the interaction be-
tween the incident wave and the spherical particle. Ex-
plicitly, the boundary condition (r=a) is expressed by (E;
+E,-E ) xXe,=(H;+H,-H;) Xe,=0, where 1 is the index
related to the particle (internal fields); i and s refer to the
incident and scattered fields, respectively; and e, is the
radial unity vector in the polar spherical coordinate sys-
tem.

A. Internal Fields

Assuming the incident EM wave is polarized in the e, di-
rection, and the scattering center is placed at the origin of
the coordinate system, we obtain an expression for the ex-
pansion of this field in terms of spherical harmonics. Im-
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posing on the boundary between the sphere and the sur-
rounding medium the continuity of the EM fields—in fact,
their (electrical and magnetic) tangential components—
expressions are determined for the internal and scattered
fields [6,7,9].

Using the same notation of Bohren and Huffman [6],
we can give the components of the electric and magnetic
vectors, E; and H;, respectively, of the interior field in a
spherical coordinate system (r, 6, ¢) by

—1co0s ¢ sinf "

E, = —22 Endnlr//n(pl)n(n + 1)7Tn,
pP1 n=1
cos ¢
19= —— 2, Eleamuihn(py) = 1d, 7 ,(p1)],
P1 n=1
sin ¢
E1¢ = E En[ldnﬂ-nlpr’z(pl) - CnTnl/Jn(pl)]y
P1 n=1
—1k;sin ¢ sin 6
Hy=—————2 E.coth(p)nin + ),
W P1 n=1
ki sin ¢~
19= ————2, E,[dymih(p1) = 1¢, 78, (p1)],
WMy P11 op=1
ky cos ¢
H1¢ = 2 En[dnann(pl) - lann‘Ml(Pl)]a
WU P1 p=1

with p;=kqr, E,=1"Eq(2n+1)/[n(n+1)], m, and 7, are an-
gular functions defined in Appendix A, Section A 2 and
n(p1)=p1n(p1) is a Ricatti-Bessel function. The functions
¢, and d, are the internal magnetic Mie coefficients,
which are presented in the section below. We outline that,
because of the notation [units in International System of
Units (SI) and time factor] adopted here, the internal EM
field (E;,H;) is not the same as that presented in [17].

B. Magnetic Mie Coefficients

If we do not assume the equality between u and u; on the
problem boundary condition, we can determine the mag-
netic Mie coefficients for the scattering (a, and b,, ob-
tained by Kerker et al. [1]) and internal (c,, and d,,) fields
[1-5]. Explicitly,

an - - 3 (2)
iy (max) £,(x) — &,(x) Y, (mx)
B (M) g, (x) — My, (x) i, (max) )
" g (mx)Ey(x) — mé, () ¢ (mx)
mi
Cn (4)

" ()€, (x) — k() g (mx)
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mi

dn = s
m i, (mx) &, (x) = &,(x) iy, (mx)

(5)

with the assumption that the function domains are re-
stricted in such a manner that the denominators do not
vanish. The quantity x=ka is the size parameter of the
spherical particle, with a being its radius and k= |k| being
the wavenumber of incident and scattered waves, and
&,(x)=x[j,(x)+1y,(x)] is the Ricatti-Hankel function of
first kind. In addition, m=(u e/ ue)? is the relative re-
fraction index and m=(ue;/ u1€)V? is the relative imped-
ance between the media. For w=pu,, then m=m and the
usual expressions for the Mie coefficients (2)—(5) are re-
covered [6,7,9].

There are some notation differences between this work
and the one presented by Bott and Zdunkowski [17].
Here, we use the same framework of Bohren and Huff-
man [6], which have treated the scattering problem of
light by means of SI and have adopted exp(-iwt) as the
time-harmonic dependency for the fields. Otherwise [17],
we have used the same notation of van de Hulst [7], who
dealt with the scattering problem in the Gaussian system
of units, and adopted exp(iwt) as the time-harmonic de-
pendency. These approach differences appear explicitly in
the choice of the Hankel functions, which is strictly asso-
ciated with the asymptotic limit for the scattered fields
(the well-known far-field approximation), and conse-
quently determine the dependencies of the Mie coeffi-
cients. Another difference between these representations
is related to the signal of the imaginary part of the rela-
tive refraction index m=m,+m;, which is positive in the
framework we have chosen [6,7].

3. TIME-AVERAGED ELECTROMAGNETIC
ENERGY

For a linear, homogeneous, and isotropic medium, the
classical theory of electromagnetism provides an expres-
sion for the time-averaged EM energy as an integral of
the component intensities within the volume under analy-
sis. In the case of a spherical particle with radius a and
internal complex EM field (E;,H;), we have the following
relation [17,19]:

27 1 a €
W(a) =f dqﬁf d(cos G)J drr? Re{zl(|E1,|2+ |E 2
0 -1

0
9, M1 2 2 2
+|E | )+Z(|H1r‘ +|Hyol + [Hyyl?) |- (6)

In Eq. (6), with respect to the field representations, we
outline that the permutation between a definite integral
and a sum of an infinite series is not trivial. In the follow-
ing calculations, we are not concerned about showing ex-
plicitly each one of the simplifications; we just assume
that the function series related to the field intensities con-
verge uniformly in the domain 0<r=a, 0=6=m, 0<¢
=27. Obviously, this mathematical condition is in agree-
ment that the energy within a finite sphere is also finite.
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A. Electric and Magnetic Internal Fields

Looking closely to the definition of Eq. (6), one can ask
about the contribution to the total internal energy associ-
ated with electric and magnetic fields separately, or even
about the contribution of their field components in spheri-
cal coordinates (r,6,¢) to this average energy. These
questions have not addressed by Bott and Zdunkowski in
their paper [17].

1. Radial Component

From Eq. (6), we obtain that the contribution of the radial
component associated with the electric field to the inter-
nal energy is given by

Re(sl) 1 2 a
W,g(a) = —f d(cos 0)j d¢J drr|E,, 2
4 -1 0 0

- d,d’,
= 4 Re(e) J drE 2 E.E j.(p1)i (p)—5 TE
n=1 n'=

xnn'(n+1)(n' + l)f d(cos 6)sin? O,
-1

Eq. (A5)
T Re(e) ~
= B —— S n(n+1)(2n +1)
2 |k1| n=1
xumfdwmmﬁ @
0

Proceeding in the same way, one derives an analogous ex-
pression for the radial component related to the magnetic
field,

W,x(a) = \EO| i )2 n(n+1)(2n+1)
n=1
e arltol ®
0

An important point to be noted here is that the integral
above cannot be simplified by means of Eq. (A1) and re-
currence relations presented in Appendix A, Section A 1.

2. Angular Components

Because of the spherical symmetry of the system, it is not
possible to write the contributions of the angular and azi-
muthal components to internal energy separately. If one
tries to do that, the necessary relations to simplify the
double sums, as exemplified in Eq. (7), do not appear. For-
tunately, if one considers both (6, ¢) contributions to in-
ternal energy, these relations are not lost. Thus, using re-
lations (A3) and (A4) from Appendix A, Section A 2 and
the first term of Eq. (6), it follows that the time-averaged
energy associated with angular components of the electric
field is expressed by
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Re(el) 1 2 a
[Wog+ Wglla) = —— J d(cos ) f d¢ f drr?
4 -1 0 0

><(|E119|2 + |E1¢|2)

|Eo|?

- 9 E (zn + 1) dr(|cnlr//n(p1)|2
2 |k |

+|d i (p)?). 9)
Similarly, for the magnetic field we obtain

(M1 )

(Wor + Wypl(a) = —|E0|

a

dr(|dnwn(p1)|2
0

XD (2n+1)
n=1

+ |cn wr/L(pl)|2) .

Here, the same problem of the expression W,.(a) arises.
Whereas the integral of the Ricatti—Bessel function is
only another way to write Eq. (Al), the second integral
above cannot be simplified.

B. Time-Averaged Internal Energy

From the expressions obtained in the previous section for
each one of the internal field components, we can calcu-
late the total time-averaged energy inside the sphere. For
the internal electric field, the expression is

Wg(a) = W,g(a) + [Wep + Wypl(a)

3
= —WO Re(mm)E {@n + 1), 2T, (y) +|d,|?

n=1
X[nZpa(y) + (n+ I, ()]}, (11)
where
1 a
In(y) = _3f drrzljn(pl)lz (12)
aJo

is given by Eq. (A1) and W, denotes the time-averaged
EM energy of a sphere with radius a having the same EM
properties of the surrounding medium,

2
W0= §7Ta3|E0|2E. (13)

For the sake of simplicity, the dependence of Z,, with re-
spect to y*=mka, like the case of the function W
=W(a,y,y"), is omitted.

In the same way, for the internal magnetic field, the av-
erage internal energy is given by

Wyla) = Wog(a) + [Woy + Wypl(a)

= —W0 Re(mrﬁ*)z {@n +1)|d,[*Z,(y)

n=1
|Cn| [(nZ,1() + (n+ 1), _1(y)]}. (14)

Once we have expressions for electric and magnetic ener-
gies within a sphere, it is possible to determine the ex-
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pression for the total time-averaged EM energy inside the
scatterer: W(a)=Wg(a)+Wg(a). Explicitly,

s -
W(a) = ZWOE )[BT () + (0 + 1) BT, 1 (y)
n=1
+(2n +1)a,Z,)], (15)
where

a, =4, (y)P[Re(mm)|c,|” + Re(mm*)|d,[*],  (16)

By =4, [Re(mm)|d,|* + Re(mm*)|c,[*].  (17)

Also, to obtain analogous expressions to the ones pre-
sented in [17], Eq. (15) can be rewritten as

3 2 2n+1 A0 A)
W(a) = ZWOE 2 w2 | dn - *
n=1Y Y y y

{Am An(y)H
B —— - , (18)
y y

with y=mka and A, (y)=d, In y(y).

C. Dielectric Sphere
A particular situation to be considered here refers to a di-
electric sphere, which has studied by Bott and
Zdunkowski [17]. With this aim, consider the nonmag-
netic case, i.e., u=pu;. Thereby, it results that m=m
=(&/€)V2. With this assumption, note that Re(m?2)=(m?2
+m*?)/2 and Re(mm*)=|m|?. Substituting these into Eqs.
(16) and (17), the expression for the internal energy ob-
tained by Bott and Zdunkowski is recovered. Once again,
we emphasize that our notation is not the same as that
employed in [17]. Indeed, we can recover the same results
by means of the following substitutions: ¢,(x)— ¢,(x),
c¢,—md,, d,—mc,, and assuming m=m. Here, {,(x)
=x[j,(x) —1y,(x)] is the Ricatti-Hankel function of the sec-
ond kind, which is related to the choice of the time-
harmonic dependence for the EM fields, like it is men-
tioned in the beginning of this description [6—-10].
Employing the recurrence relations involving Bessel
spherical functions [20,21], we obtain the derivative of
first order A (y)=-1 —A,zl(y) +n(n+1)/y2. Therefore, using
the L'Hospital rule, the limiting case of a perfect dielectric
sphere, which takes place when m;—0, provides
4y? lim,,, o W(a)=3W,3,_,7,(2n+1)[1+A}(y)-n(n
+1)/y?], where v, =m2|¢,(y)|?(|c,|?+|d,.|?). Except for some
commented notation differences, this result is the same as
that obtained in [17].

D. Absorption Cross Section

The classical Mie theory provides a set of useful expres-
sions to calculate the scattering, total, and absorption
cross sections in the scattering process. Explicitly, call
0sca the scattering cross section and oy the extinction (or
total) cross section. Using the same framework of [6], one
can write
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27 " y ,
Ooea = ?21 @n + 1)(|a,* + [b,%), (19)
27>
Oiop = ﬁg (2n + DRe{a, + b,}. (20)

Consequently, the absorption cross section o, associ-
ated with the scatterer is defined in terms of o, and oy
by the relation o, =0y — 0seq. In other words, the absorp-
tion cross section in the Mie single scattering is deter-
mined by quantities and coefficients related only to the
scattered EM fields [6,7,9]. Although it is suitable and
even natural to express the absorption cross section in
terms of the internal coefficients ¢, and d,,, notice that we
do not do any reference to the internal EM fields.

From the boundary conditions in the sphere problem
[6], the Mie coefficients are linked by the following equa-
tions below:

RV ()b, =, (%) - ju(mx)c,, (21)

RV (@)a, =, (&) - i, (m2)d,. (22)

Thus, substituting the coefficients a, and b, into o,
=00t — Osca and manipulating that, we obtain the following
expression respective to the absorption cross section:

27~ '
Oabs = k—:z (2n+1) Re{%(cn + nﬁdn)}
|, (max)|?
- W(wz +|md,|?) ¢ (23)

Finally, using the definition of ¢,, and d,, given by Egs. (4)
and (5) and the fact that Re[—i& (x)&,(x)]=x,(x)¥,(x)
-, (@) x,(x)=1, where x,(x)=-xy,(x) is the Ricatti—
Neumann function, we obtain
27" ) ) m
Tabs = 75 2, 20+ Dlea” + d, ) Im| —54,0) 4,67 |-
k n=1 |m|
(24)

The exact expression (24) for the magnetic absorption
cross section in terms of the internal Mie coefficients is
not found in the classical books of the scattering theory
[6,7,9] and it had not been determined so far.

4. NUMERICAL RESULTS

In this section we present some numerical analysis from
the exact equations determined in the sections above. Our
aim is not to restrict our studies in some particular case of
magnetic scattering, but to introduce a general formula-
tion of the internal energy which can be used whether in
magnetic case (u# uq) or in nonmagnetic one (u=uq).
Here, all numerical results are obtained by means of a
program created by us using the free software for scien-
tific computation, Scilab 5.1.1. As usual in the numerical
Mie scattering, rather than to do infinite sums in =;_; in
the calculation of the scattering quantities, which is im-
possible, we assume an approximation: finite sums with
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1/3

the upper limit n,,=x+4x"°+2, where x is the size pa-

rameter [8].

A. Normalized Quantities

For numerical studies, it is suitable to define dimension-
less quantities related to the internal energy and the Mie
coefficients,

Wg(m,m,ka;ea)

W™ (m, i, ka) = ———————— 25
e 25
Wy(m,m,ka; e a)
Wy™(m,m,ka) = —————, (26)
WO(E)a)

where Wy, Wy, and W, are expressed by Egs. (11), (14),
and (13), respectively. The dependence of W; and Wy on
the quantity m”* is omitted. Therefore, one can define the
normalization of the total time-averaged internal energy
by the relation Wig™"=Wg™"+Wx™ or directly from
Eq. (18): Wiy "(m,m ,ka)=W(a)/W,.

Also, from [21], we can obtain the recurrence relation
@n+1)%,(p) =1 H{n-1(p) P+ ins1(pD) 2
+2 Re[j,_1(p1)ins1(p])1}; thus, Eq. (7) can be rewritten as

WrE(a) 3 9
We "1 emmﬂz12 |d| L1 () + Zpia ()
2 a
+ EJ drr2 Re[jn—l(pl)jn+l(pi)] . (27)
0

Note that the integral that appears in the sum above is
quite similar to that one expressed in Eq. (Al). Although
this one cannot be simplified by means of Eq. (A1), it is
possible to show numerically that the result of this inte-
gral is proportional to a®. It means that we can study the
radial contribution to the internal energy normalized by
W, using only the dimensionless parameters m, m, and
ka. The same argument can be applied to both [Wg
+W,gl(a)/W, and the analogous expressions respective to
the internal magnetic field, given by Eqgs. (8) and (10).
In the situations considered here, the values of Re(mm)
and Re(mm®) are very close in such a way that Wg(a)
~Wg(a). Thus, we only consider the total time-averaged
internal energy in our analysis. Further, we remark that,
although in these studies the relative magnetic perme-
ability is assumed to be real, there is no such a restriction
in the calculated expressions. For soft microwave ferrites,
a more realistic study should consider the magnetic loss.
Figures 1 and 2 illustrate a succession of narrower
picks of the values of the normalized internal energy in
single magnetic Mie scattering as a function of the size
parameter and relative magnetic permeability. Here, we
are not concerned about studying in detail the resonances
picks and ripple structure due to the internal coefficients
¢, and d, [17,22,23]. The internal energy of a magnetic
sphere presents resonances peaks even in the limit of
small geometric size (compared to the wavelength). These
resonances are due to the increase in the total cross sec-
tion due to magnetism. This increase leads to a decrease
in the photon mean free path in multiple scattering re-
gime in a disordered system. The smaller mean free path
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Relative magnetic
permeability: ce- 100

ka

Fig. 1. Comparison among the distributions of W(a)/W, as a
function of the size parameter ka. The values of the relative per-
mittivity and permeability related to a nonabsorptive sphere are
€/€=1.4161 and u,/pn=1,10,100,1000, respectively. The inter-
nal energy W(a)/W, is calculated in the interval 10 %<ka=1,
S(ka)=10"%.

favors the localization phenomenon as pointed in [3-5].
For dielectric spheres, these narrower resonance picks
are well known and they are referred to as morphology-
dependent-resonances (MDRs) [24]. In the Mie theory, for
large size parameters, these MDRs are commonly ob-
served at the scattered and internal intensities and at the
total cross section.

In our system, observe that when one increases the
contribution of the magnetism in the scatterer, the values
of the internal energy W(a) become much larger than W,
and the narrower picks appear even for small size param-
eters. In the nonmagnetic case reported in [17], there is
an opposite tendency, that is, both the internal energy
and the absorption efficiency enhance with the size pa-
rameter. This difference between a nonmagnetic case and
a magnetic one is illustrated in Fig. 3. This is due to the
increase in the total cross section even though geometri-
cally the scatterer is much smaller compared to the wave-

108‘5
1071;
1061;
10°4
- 104
10°4
10212
10‘12 WA

=
S
=

Relative magnetic
10 } permeability:

— 10000

10" : : : ; )
0.0 0.2 0.4 0.6 0.8 1.0

ka

Fig. 2. The normalized time-averaged internal energy W(a)/W,
within a nonabsorptive magnetic sphere plotted as a function of
the size parameter ka. The values of the relative permittivity
and permeability are €;/e=1.4161 and u,/u=10% respectively.
The internal energy W(a)/W, is calculated in the interval 107°
=ka=1, 8(ka)=10"%
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10°

Relative magnetic | —— 1
permeability: | - 100

104

ka

Fig. 3. The normalized time-averaged internal energy W(a)/W,
plotted as a function of the size parameter ka. The values of the
relative permeability are u,/u=1 (nonmagnetic sphere) and 100
(magnetic sphere). The relative refraction index is m=1.334
+1.5X107%, which have been used in [17] in the nonmagnetic
scattering approach. The quantities are calculated in the interval
1=ka=50, 8(ka)=0.01.

length. In other words, the incident EM wave interacts
strongly with the optical cross section instead of the geo-
metrical one [2-5].

It must be mentioned that this assumption of a nonab-
sorptive magnetic diffuser is conditioned to the frequency
range of the incident beam. Usually, it is controlled with
an external static magnetic field [11-13,15]. Indeed, there
is a wide variety of soft ferrites which exhibit very large
values of relative magnetic permeability at applied fre-
quencies typically below 100 MHz with low magnetic loss
[11]. For the sake of simplicity and generality, the situa-
tions considered here do not take into account the scat-
terer in the magnetized state, and a scalar value for the
m1/ p is adopted (Fig. 4). The dependence on the angular
frequency w of the incident EM wave remains implicit on
the value of the size parameter ka. Given a value of o for
the incident EM wave, a surrounding medium (e, u), and
a scatter (e;,u;), one readily obtains z=w(ue)’? and &,
=mk.

angular
E radial

107 : : ; )
0.0 0.5 1.0 1.5 2.0

ka

Fig. 4. The separation of the total time-averaged internal en-
ergy in radial and angular contributions respective to both elec-
tric and magnetic fields. The values of the relative electric per-
mittivity and magnetic permeability are €,/e=10 and wu;/u=100,
respectively. The component contributions W.(a)/W, and
Wy 4a)/W, are calculated in the interval 10%<ka=2, S(ka)
=10
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1.6x107 1

1.2x107 1

8.0x10° 1

QabsWO/W(a)
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Fig. 5. Ratio between the absorption efficiency @, and the nor-
malized time-averaged internal energy W(a)/W, plotted as a
function of the size parameter ka. The values of the relative per-
meability and refraction index are p;/u=1 (nonmagnetic sphere)
and m=1.334+1.5 X 107%, respectively. The quantities are calcu-
lated in the interval 1=ka =49, 5(ka)=2. The angular coefficient
of linear regression is approximately 2.997 X 10~9, which is in
agreement with Eq. (29): 8m;/(3m,)~2.998 X 107°.

B. Weak Absorption Regime
In the weak absorption regime, the relation between the
time-averaged internal energy and the absorption effi-
ciency is quite evident when we compare them as shown
in Fig. 5. This correlation between these quantities in
nonmagnetic scattering has been studied in [17].
Analytically, for m;<m, and /;<m,, we can write y2
—y*2=41x?m,m;, Re(mm)=~m,m,, and Re(mm*)=~m,m,.
Using these approximations in Eq. (18), it follows that

3 m,2m, ”
Wwa(a) = _WO_WZ (2)7, + 1)
8 m;x"m, -1

X (e + |d P Iml ¢, () 8, (v)]. (28)

Once the absorption efficiency in the Mie single scattering
is defined by Qq,ps=0aps/ 0, Where og=77a2 is the geomet-
ric cross section and o, is expressed in Eq. (24), we can
write

3 m,
Wwa(a) = _WO Qabs7 (29)
8 m

X

which is the same relation obtained in [17] in the non-
magnetic case. Indeed, this approximation is valid wher-
ever m;<m, and m;<m,; it is not affected by the value of
M1/ .

In addition, for the case in which m,=1, one obtains
Wyala)=W,. Therefore, in this particular situation, one
can write Q.= 8x/(3m;), which is a well-known expres-
sion [7,17].

5. CONCLUSION

In this paper we generalize the exact expression of the
time-averaged EM internal energy, obtained first in [17],
to the case of magnetic spherical scatterers. Using the
same framework of [6] and assuming the magnetic scat-
tering approach [1], we determine analytical expressions
for the contributions to the EM internal energy related to
the field components separately. The expressions for the
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EM internal energy within a dielectric sphere and the re-
lation derived in [17] in the weak absorption regime be-
tween the internal energy and the absorption efficiency
are recovered. Especially, we find that the magnetism of
the particle does not break the linear relation between the
absorption efficiency and the size parameter. To do so, we
analytically calculate an expression for the absorption ef-
ficiency, which depends only on the internal magnetic Mie
coefficients. In addition, we calculate the limiting cases of
the magnetic Mie coefficients and present some important
properties of the radial functions which are used to sim-
plify the obtained expressions. Finally, the main result of
this work is that, even for small scatterers compared to
the wavelength, the value of the EM internal energy
within a magnetic sphere is much larger than the one as-
sociated with a sphere with the same properties of the
surrounding medium. Physically, we ascribe this fact to
the enhancement of the total cross section due to the mag-
netism in the scatterer.

APPENDIX A: SPECIAL FUNCTIONS

1. Radial Functions
For the situation in which m;# 0 is verified, that is, the
imaginary part of the relative refraction index (absorptive
component) is not null, we can write
“ T @Un ") = 7Ny )]
f r2bn(p1)|2dr = 2 )
0 y -y

0.y } ’ A1)

= Zasljn(y)|2R6|: ) )
yo=y

where py=mkr, y=mka, and ¢,(y)=yd,[In ¢,(y)]. Equa-
tion (A1) is provided, in terms of Bessel cylindrical func-
tions, by Watson [20]. In the present context, to treat only
with spherical Bessel functions, we have used the relation
(2p1/ ™Y, (p1) = 1e1/2(p1) [20]. Also, if the relative refrac-
tion index m is real, according to [20], the integral in
Eq. (A1) can be simply rewritten as

a a3
f rzji<p1)dr=5[1‘%@)—]',,_1@)]'“1@)], (A2)

0

which is obtained by taking the limiting m;—0 in
Eq. (A1) and using the L'Hospital rule and recurrence re-
lations.

2. Angular Functions
In the expansion of EM fields, it becomes natural to define
the angular functions m,(cos 0)=P,1l(cos 0)/sin # and
7,(cos 0)=dP,ll(cos 0)/d6, where 6 is the scattering angle
and P} is an associated Legendre function of first order.
These angular functions are quite convenient in the cal-
culation of field intensities.

Due to properties involving the associated Legendre
functions, 7, and 7, satisfy the following expressions,
Vn,n' e IN:
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1 2n%(n + 1)2
f d(COS 0)(’7Tn7an + TnTn’) = ﬁén’n” (A3)
i n+
1
J d(cos 0)(m, 7, + T,7,) =0, (A4)
-1
1 2n(n+1)
J d(cos O)m,m, sin? 6= ——5, . (A5)
. 2n+1 7

These expressions facilitate the determination of quanti-
ties involving field intensities. We emphasize that, in the
classical books of scattering theory, Eq. (A5) is not found
in this explicit form [6,7,9].

APPENDIX B: LIMITING CASES

In these particular cases, we remark that n=1 is suffi-
cient to study the nonmagnetic scattering theory. Here,
we imperatively have to consider n=1 and 2 to keep con-
sistent orders in the Mie coefficients.

1. Small Particle Limit
For the small argument limit into the Mie scattering co-
efficients, we obtain

1w or(mx) - 2mm 1x® [@1(mx) — mm]? — mm ey (mx)

= 3 ¢1(mx) + mm "5 [o;(mx) + mm]?
x| @1(mx) - 2mm 2
+ 3 W + O(x7), (Bl)
1

13 o1 (mx) — 2mim

by~—F—————————
3 @i(mx)+m/im

1® [py(max) = m/m]? = (m/m) 1 (mx)

5 [@1(mx) + m/m]?
x8 |: ¢1(mx) - 2m/m :| 2
| —————— | +0&)), (B2)
9| ¢i(mx)+m/im

165 o (max) — 3mm
g~ ————— + Ox7), (B3)
45 gy(mx) + 2mm

165 o (max) — 3mim

9 +0O(x"). (B4)

T @o(mx) + 2mim

For the Mie internal coefficients, the approximations as-
sume the following forms below:
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max? mim
c1 = (B5)
1(mx) [@(mx) + m/m]
mxt  (m/m)] g1(mx) — mim] o B6
- gr(mx)  2[@y(mx) + m/m]? ), (B6)
(m/m)x> mm
dl = — (B7)
Pr(mx) [q(mx) + mm]
(mim)x* mm[ o1(mx) — mm] ou B8
" amx) 2[eima) +mmP ) B9
m (m/m)x®
co =~ — + 0(x%), (B9)
3(mx) [ po(mx) + 2m/m]
(m/m) mmx®
2 +0(x5). (B10)

" 3yy(mx) [gg(max) + 2min]

Note that, for these approximations, the scattering coeffi-
cients ay, ay, by, and by have order O[(ka)”], whereas the
internal coefficients ¢, ¢y, d, and dy are O[(ka)®]. Terms
for n>2 are ignored here.

2. Rayleigh Approximation
In this approximation, in which |m|x <1, the Mie scatter-
ing coefficients can be written as

—2qidmm -1 x®m®m -6mm+ (mm)?+4

a, = — - — 3
3 mm+2 5 (mm + 2)
4x8 (mim —1\?2
+—| — +0@"), (B11)
9 \mm+2
. 2t mim -1 wx®m®m - 6mim + (m/m)? +4
"8 mim+2 5 (m/ +2)2
4x8 (mim - 1\2
+—| — +0E"), (B12)
9 \m/m+2
—wx® mm-1 . B13
Qg =~ —+0(x"),
2~ 15 ommag  O®) (B13)
—wd mim-1
by= ———+0@"), (B14)
15 2m/m +3

and the Mie internal coefficients assume the forms

3 | (mx)? 1 8a2[ (mx)? ] (2m —m)
¢y = 1+ -— 1+ R SE—
2m +m| 10 | 2| 10 | (2m +m)?
+0O(xP), (B15)
3 | (mx)? 1 8a2[ (mx)? i (2-mm)
di= 1+ -—| 1+ —
2+mm | 10 | 2 | 10 |[(2+mm)

+0(xP), (B16)

T. J. Arruda and A. S. Martinez

5
- 00, B17
= Gz O (B17)

5
~ 5). B18
m(3 +2mm) +06) ( )

Taking the particular case m=m, Mie coefficients for non-
magnetic scattering are recovered [6].

3. Ferromagnetic Limit for x<1

This approximation, similar to the Rayleigh limit, is de-
rived directly from the approximation of small spheres
compared to wavelength. Using the expressions for large
argument limit present in [25], one can obtain

13 x tan(mx) + 2m
q~——
178 & tan(mx) —m

10 [x tan(mx) + m]? + max tan(max)

5 [x tan(mx) — m ]2

+
9

x%| x tan(mx) + 2
x tan(mx) - m

2
] +0((x"), (B19)

1 max tan(max) + 2

bl - ., . <
3 mx tan(mx) -1

wed [mx tan(mex) + 112 + max tan(mx)

5 [mx tan(mx) — 1]2

28| max tan(mx) + 2 |2
= ————————— | +0OE"), (B20)
9 | mx tan(mx) -1

1° x — 3m tan(mx)
g~ —

————+ 0x"), (B21)
45 x + 2m tan(mx)

we® mx — 3 tan(mx)
by +0@"). (B22)

N Eﬁlx + 2 tan(mx)
The internal coefficients are

m xz

“a= cos(mx) [mx tan(mx) — 1]

mx*  [/mx tan(mx) + 1]

- 5
2 cos(mx) [fx tan(mx) — 112 +0(?), (B23)

m JCZ

1= cos(mx) [x tan(mx) — m ]

mx*  [x tan(mx) + ]

- 5
2 cos(mx) [x tan(mx) - m]? +0(x%), (B24)
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3

P — 0%, (B25)
3 cos(mx) [2 tan(mx) + mx]
-m x°
+0x%. (B26)

= 3 cos(mx) [2m tan(mx) + x]

In this case, since low order in the size parameter is used,
one can obtain an analytical expression for the physical
quantities, such as cross sections, for instance.
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