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Abstract. In this work we propose an alternative model of the spread of
tuberculosis (TB) and the emergence of drug resistance due to the treatment
with antibiotics. @ We implement the simulations by an agent-based model
computational approach where the spatial structure is taken into account.
The spread of tuberculosis occurs according to probabilities defined by the
interactions among individuals. The model was validated by reproducing results
already known from the literature in which different treatment regimes yield
the emergence of drug resistance. The different patterns of TB spread can be
visualized at any time of the system evolution. The implementation details as
well as some results of this alternative approach are discussed.
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1. Introduction

Mathematical models have been used to study the dynamics of epidemics as an attempt
to predict their behavior and control it through vaccination and public health programs.
Most of these models describe the behavior of a given disease by means of ordinary
differential equations (ODEs) and the transitions among the states of the considered
disease are governed by rates [1]. These mathematical and computational approaches
have been applied to understand one huge public health problem: tuberculosis.

According to the World Health Organization, more than two billion people are infected
with M. tuberculosis [2], the bacteria that causes tuberculosis (TB). This disease is
responsible for more deaths of adults than all other infections combined [3,4]. Thus,
effective programs for the global control of tuberculosis are necessary.

In order to help to develop public health policies, some mathematical models to
study TB have been implemented. By using ODEs, computational scenarios have been
used to understand the dynamics of the spread of tuberculosis [5]-[8] as well as to check
the prevalence and emergence of drug resistance due to treatment with antibiotics [4],
9]-[12]. In [4], [9]-[11], Blower and collaborators have studied the prevalence of TB
under different regimes of antibiotics treatment. Besides the treatment, a preventive
therapy, called chemoprophylaxis, is also studied to which latent people are subjected
to avoid them progressing to the active state of the disease. Moreover, and maybe the
most important, these models take into account the emergence of drug resistance due to
antibiotics treatment.

Taking this ODE-based model as a reference, we propose an alternative computational
agent-based model to study TB dynamics and the emergence of drug resistance. Our
approach offers the possibility to explicitly represent heterogeneities at an individual level
and it also allows us to visualize the spatial patterns of the spread of TB [13].

This paper is organized as follows. In section 2, we present the reference model.
Section 3 is devoted to the explanation of the agent-based model for TB and its subsections
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Figure 1. Schematic model for tuberculosis transmission (source: [11]). Ag =
BsTs and Ar = BrTR.

explain in detail each step of the model. The implementation of the computational model
as well as some results obtained are discussed in section 4. Concluding remarks and
possible extensions of this model are presented in section 5.

2. Tuberculosis modeling with ODEs

Blower et al developed a compartmental model for the spread of tuberculosis in a
population [4], [9]-[11] where each one of the disease states is identified as a compartment.
Individuals that are in the same state belong to the same compartment, namely:
susceptible (X), latent (L;), latently infected that effectively received chemoprophylaxis
(Cs), infectious (7;) and effectively treated individuals (£;). The subscripts ¢ define if the
pathogen is sensitive (S) or resistant (R) to antibiotics.

This compartmental model consists of eight ordinary differential equations (ODEs)
that represent the dynamics between compartments (see [4], [9]-[11] for more details).
The transitions between the compartments of this model can be seen in figure 1.

As outlined in [14], modeling based on deterministic ODEs used by Blower and
collaborators presents some limitations, such as: the constant population size, i.e. no
births, deaths and migration occur, and the populations are well mixed, i.e. there is
homogeneous movement between subpopulations. Also in [14], the author mentions that
‘changes in the density of localized populations, changes in immunity, susceptibility and

incubation time, are natural attributes of epidemics, but are omitted in simulations with
ODE’s’.

3. Agent-based model for TB

Let I;;, with (4,5) = {1,2,..., L}, represent one individual placed on one site of a square
lattice of side L. The quantity I;; belongs to a population of size N = L x L and it can
have one of five possible states: I;; € {X, Lg, Lgr,Ts,Tr}. If I;; = X, the individual is
susceptible to tuberculosis, i.e. not exposed to the pathogen that causes it. The individual
I;; = Ly, with £ = S, R, is in a state of latency, or exposed to the bacteria that causes
TB but he/she is not sick. The subscript & defines whether the pathogen is sensitive (.5)
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Figure 2. Schematic representation of the interaction between the five states of
tuberculosis.

Table 1. Parameters of the model.

Parameter Definition

1 Probability of natural death

wr Probability of death due to tuberculosis

P Probability of developing active tuberculosis from X state

v Probability of disease progression in latent individuals

o Probability that chemoprophylaxis therapy is effective

1) Probability of effective treatment for infectious individuals

r Probability to develop drug resistance during treatment

1) Relative treatment efficacy

nr, Proportion of latent individuals that receive chemoprophylaxis
nr Proportion of infective individuals that receive treatment

or resistant (R) to antibiotics. Finally, the individual [;; = T}, with £ = S, R, is called
infectious, i.e. this individual has active tuberculosis.

Individuals may undergo probabilistic transitions between the states of the system.
The main parameters that drive these transitions are shown in table 1. Transitions are
allowed between states and their respective probability can be seen in the scheme shown
in figure 2.

In this model, we assume that cured or dead individuals are replaced in the lattice by
susceptible individuals. This replacement is done in order to mimic the recruitment rate
used in ODE models [4], [9]-[11]. Therefore, the states concerning cured and dead do not
appear in the scheme shown in figure 2.

In the following, we describe each state of the model and the dynamics of interaction
between them.

3.1. Contagion of susceptible individuals (X)

Individuals in X state may be infected by individuals in Ts and/or Tk states. These
individuals can be infected with TB due to the presence of:

doi:10.1088/1742-5468/2011/05/P05003 4
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(i) infectious neighbors Ts and/or Tk (infection of local origin); and

(ii) infectious individuals Ts and/or Tg in the rest of the lattice (infection of global origin).

Note that, in both cases, only infectious individuals Ts or Tx without treatment can
transmit the disease.

The existence of two sources of infection means that a person can be infected by a
neighbor or a non-neighbor infectious individual and these events may a prior: occur with
different probabilities.

The local probability of an individual in the X state to be infected with the type S
bacteria is given by [15]

PES :1_(1_BS>NT37 (1)

where (s is the infectivity of type S bacteria and Nrg is the number of infectious neighbors®
without treatment in the T state. Similar to equation (1), local infection may also be
caused by type R bacteria:

Prp=1—(1-pg)V=, (2)

where O = af3s is the infectivity of type R bacteria® and Nr,, is the number of infectious
individuals without treatment in the Ty state. Finally, the probability of local infection
due to both types of bacteria is

Pr=Pr, +Pp, — Pe Pr,,. (3)

In equation (3), the evaluation of local probability takes into account the concurrence of
events (coinfection), since they are not mutually exclusive. Anyway, if coinfection takes
place, we assume that this individual is infected only by type R bacteria.

Besides the probability to be infected by the neighborhood, there is also the
probability of contagion due to other individuals with TB in the lattice. Thus, the global
probability to be infected by type S bacteria is

It
Poy = s, @)

where 17 is the total number of infectious individuals T's without treatment in the lattice.
Similarly, the contribution to the global probability due to infectious individuals with type
R bacteria is

T,
— 5
N ? ( )

where 17, is the total number of infectious individuals T without treatment in the lattice.
Then, the global probability to become infected because of the two types of bacteria is
given by

PQR:ﬁR

PQ:PQS+PQR_PQSPQR' (6)

Again, in equation (6), the evaluation of local probability takes into account the
concurrence of events (coinfection).

® In all simulations, to calculate local probabilities we consider the Moore neighborhood (eight neighbors) around
the individual in the X state.
5 Type R bacteria have a lower transmissibility than type S, then 0 < o < 1, see [16,17].
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Equations (3) and (6) give us the probability that the infection is caused by local or
global sources, respectively.

The intensity of these effects, local or global, can be adjusted by the parameter A,
where A € [0,1]. The quantity A is the intensity of the local effects of infection and,
consequently, 1 — A is related to its global effects. Given this parameter, we can express
the total probability of infection as a linear combination of local and global probabilities
of infection:

P=AP.+(1—A)P,. (7)

For a susceptible individual X in the lattice, all the probabilities of infection are
calculated using equations (1)—(7). Next, a random number rn € [0,1] C R is generated
and it is compared to the total probability of infection, equation (7). If rn < P, the
infection occurs; or it does not, otherwise, and the individual is kept in the X state.

If the infection takes place, a new random number is generated to choose whether
infection will be caused by local or global sources. If rn < AP;/P, the source of infection
is local, and it is global otherwise.

Next, we define which type of bacteria, S or R, is the cause of infection. As mentioned
before, cases of coinfection will be considered as an infection by the type R bacteria.
Hence, the normalized local probability to be infected by the type S bacteria is

Pﬁs(l — PER) . (8)
P£5+PLR_P£SP£R

Pr, =

The normalized probability for the type R pathogen is simply Py r=1- 1535, since cases
of coinfection are considered type R infection. Then, a random number is compared to
the value of equation (8), i.e. if rn < P, the infection is locally caused by the type S
bacteria, otherwise it is locally caused by the R bacteria.

In a similar manner, if the infection is of global origin, the normalized probability to
be infected by the type S bacteria is

Pgs(l - PgR)

Py, = , 9
; PQS+PQR_PQSPQR ()

and Pg, = 1 — Pg,. The value obtained in equation (9) is compared to a random number.

If rn < Pg, the infection is due to the type S bacteria, or type R otherwise.
There are still two possibilities for a change of state:

(i) go straight to the infectious state (active tuberculosis) T}, with k& = S, R with
probability p; or

(i) enter a latent state, Ly with k = S, R with probability 1 — p.

3.2. Latent individuals (Ls and Lg)

Individuals in the latent state are only carriers of the pathogen and they do not
transmit the disease. If the pathogen is detected in this state, individuals may undergo
chemoprophylaxis therapy that can clear such pathogens.

In our model, a proportion of latent individuals, ny,, are randomly chosen to receive
chemoprophylaxis. During the chemoprophylaxis therapy, individuals may:

doi:10.1088/1742-5468/2011/05/P05003 6
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(i) be cured with probability o, leaving the Lg state and returning to the X state;
ii) progress to one of the infectious states, T's or Tg, with probability v; or
g
(iii) remain in the latent state.

Latent individuals that have reached the end of therapy but not cured, remain latent.
All other latent individuals, those who do not receive chemoprophylaxis, may:

(i) progress to one of the infectious states with probability v; or
(ii) remain latent with probability 1 — v.

Note that chemoprophylaxis has no effect in latent individuals carrying the resistant
type of bacteria (R).  Therefore, even under treatment with chemoprophylaxis,
permanence or progression of Ly individuals to other states is the same for those who are
not receiving chemoprophylaxis.

3.3. Infectious individuals (Ts and Tg)

Infectious individuals are in the active state of TB and they can transmit the pathogen.
There are two different states for these individuals: T, for those who carry the type of
bacteria sensitive to antibiotics, and Tg, for those who have the type of bacteria resistant
to antibiotics.

A proportion, nr, of infectious individuals are randomly chosen to receive treatment
with antibiotics. At each simulation step, individuals who are in the Ty and Tx states can
die from tuberculosis with probability ur, regardless of being under treatment or not.

Ts individuals who are under treatment may:

(i) be successfully treated, clearing the infection with probability” (1 — r)¢;
(ii) develop drug resistance due to treatment failure with probability r¢ [18,19]; or

(iii) reach the end of the treatment without clearing the infection, but also without
developing drug resistance, remaining in the T state.

For individuals in the Tk state, the procedure is the same as described above, but the
treatment with antibiotics for resistant strains of bacteria have a lower efficacy in relation
to those cases involving bacteria sensitive to drugs [4]. In our model, the relative efficacy
is adjusted by the parameter ¢, i.e. the probability of healing Tk patients will be given
by the product d¢.

4. Model implementation and results

At time t = 0, only susceptible, X, and infectious individuals with the sensitive type
of bacteria, Tg, are present in an L x L lattice. The initial number of Ty individuals
represents 20% of the total population and their distribution on the lattice is random
and uniform. The lattice is updated synchronously, i.e. this update occurs at the same
time for all individuals and it is done after all individuals have been tested during each
simulation step (computational time interval).

" Note that the probability of effective treatment ¢ is altered depending on the value of the treatment failure
probability 7.

doi:10.1088/1742-5468/2011/05/P05003 7
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Figure 3. Snapshots of the lattice. Each color represents one state: green, X;
yellow, Lg; orange, Lp, red, Ts; and pink, Tr. The simulation parameters are:
L =100, np = 0.6, n, = 0.1, = 0.50, 0 = 0.20 and r = 0.9.

The values of the parameters used in the numerical simulations are: L = 317, a = 0.8,
ng = 0.1, np = 0.6, ur = 2.74 x 107 /day, p = 3.65 x 107°/day, p = 1.37 x 10~*/day,
v=23.13x107°/day, 85 = 2.47 x 1073 /day and 6 = 0.7. The remaining parameters, ¢, o,
r and A, have specific values for each scenario and their values are assigned in each case.
We stress that these values have been adjusted so that each simulation step represents
one day.

In order to illustrate the spatial distribution of individuals in the lattice, as well as
the time evolution of the system, we have plotted in figures 3(a)—(d) four snapshots of the
lattice for ¢t = 0, 199, 220 and 300 years. In figure 3(a), the system is shown at ¢ = 0 where
one can see only X (green) and T (red) individuals. As mentioned above, the amount of
Ts individuals is 20% of the total population. The system evolves with no public health
intervention (no treatment for TB) until the 199th year, which is plotted in figure 3(b).
In this stage, three states can be seen in the lattice: X (green), Lg (yellow) and T (red).
The reduction in the amount of Ty cases is due to the death of ill individuals, once there is
no treatment with antibiotics. In the same figure, there can also be seen the large quantity
of latent individuals, which can be explained by the absence of antibiotics treatment and
chemoprophylaxis.

doi:10.1088,/1742-5468 /2011 /05 /P05003 8
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Figure 4. Evolution of tuberculosis in a lattice model representing 400 years for
different initial proportions of infective individuals with type S bacteria, Ts(t =
0). The system evolves with only local interactions (A = 1.0). Inset: a zoom for
the period from Oth year to 100th year. Treatment and chemoprophylaxis are
not applied during the whole evolution of the system. The simulation parameters
are: ny = 0.0, ny, = 0.0, ¢ = 0.0 and o = 0.0.

The treatment with antibiotics and chemoprophylaxis started on the first day of the
200th year. Then, in order to visualize the effect of this public health intervention, in
figure 3(c) one can see a snapshot of the system in the 220th year, i.e. 20 years after the
beginning of the intervention. As expected, the amount of T individuals has decreased
dramatically due to treatment with 50% probability of effective cure (¢ = 0.5). There
is also a decrease in the amount of Lg individuals because of the lower quantity of Ty
people (source of infection) and the response to chemoprophylaxis. Another consequence
of the antibiotics treatment is the emergence of drug resistance, i.e. the emergence of Ly
(orange) and Tk (pink) individuals.

Finally, in figure 3(d), in the 300th year, the system has reached the steady state.
Cases of tuberculosis caused by type S bacteria no longer exist because of the antibiotics
treatment. On the other hand, the use of these drugs has caused the emergence of drug
resistance. Both effects can bee seen in the figure: the amount of X individuals is higher
than in the past periods, and Lr and Tk cases of tuberculosis are present in the lattice.

In figures 4 and 5, one can see the evolution of the system during 400 years for
different initial proportions of infected individuals with type S bacteria. The values are
Ts(t =0) = {1%, 5%, 10%, 20%, 50%, 100%} of a total population of 100000 individuals.
In these simulations there is no treatment (ny = 0.0) and no chemoprophylaxis (n; = 0.0).
Therefore, the steady state curves are the endemic states of tuberculosis without the
intervention of health care systems. Also in figures 4 and 5, it is clear that the endemic
state does not depend upon the initial conditions of the system. Nevertheless, the transient
time to reach steady states depends on the initial condition of Ts(¢ = 0). The comparison
between these figures shows that the time to reach a steady state is longer when we assume
only local interactions (A = 1.0) in figure 4. When only local interactions are taken
into account the spread of the disease is limited to the neighborhood of the susceptible

doi:10.1088/1742-5468/2011/05/P05003 9
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Figure 5. Evolution of tuberculosis in a lattice model representing 400 years,
for different initial proportions of infective individuals with type S bacteria,
Ts(t = 0). The system evolves with only global interactions (A = 0.0).
Inset: a zoom for the period from Oth year to 100th year. Treatment and
chemoprophylaxis are not applied during the whole evolution of the system. The
simulation parameters are: np = 0.0, ny, = 0.0, ¢ = 0.0 and ¢ = 0.0.

individuals. On the other hand, when only global interactions are present, figure 5, the
pool of susceptible individuals subjected to be infected is bigger, speeding up the spread
of TB.

The evolution of tuberculosis during 500 years is shown in figure 6. From the first
day of the Oth year up to the last day of the 199th year, there is no treatment (ny = 0.0)
and no chemoprophylaxis (n;, = 0.0) so that the system can go to an endemic state
of tuberculosis without intervention. From the first day of the 200th year, antibiotics
treatment starts with a proportion of individuals under treatment ny = 0.6 and 95%
efficacy (¢ = 0.95). There is also started chemoprophylaxis therapy with n;, = 0.1 and
58% efficacy (o = 0.58). In figure 6, two effects become apparent as soon as the treatment
and chemoprophylaxis start:

(i) an abrupt drop in the number of T individuals because of the high efficacy of the
treatment;

(ii) emergence of drug resistance, due to the 10% probability of treatment failure (r =
0.1).

The inset of figure 6 shows a zoom in the period running from the 190th to 300th year.
In this inset, one sees that cases of tuberculosis sensitive to antibiotics (7) have vanished
around 60 years after the beginning of the treatment. As soon as the treatment starts,
due to the probability of treatment failure, r, the emergence of drug resistance occurs and
there is a peak in the Tk cases between the 201th and 205th years. The emergence of Tx
cases depends upon the treatment failure of T cases. Thus, initially, the amount of Ty
individuals is higher, which creates a pool of Ty individuals to be converted to Tg cases.
After a few years, as soon as Ts has decreased, the amount of T cases also decrease, and
the peak shown in the figure converges to an stable endemic state. Remember that Tk

doi:10.1088/1742-5468/2011/05/P05003 10



An agent-based computational model of the spread of tuberculosis

20000

18000

16000

14000

12000

10000

8000 280 300 |

6000 | Time (years)

4000 [

Annual Disease Incidence per 100,000

2000 -

0 100 200 300 400 500
Time (years)

Figure 6. Evolution of tuberculosis in the lattice model, representing real 500
years. Treatment and chemoprophylaxis start at year 200. Inset: zoom of the
period from 190 to 300 years. The simulation parameters are: ny = 0.6, ny, = 0.1,
¢ =0.95, 0 =0.58 r=0.1 and A = 1.0.
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Figure 7. Evolution of tuberculosis during 300 years with treatment and
chemoprophylaxis starting at year 200 for two sets of parameters. Set 1: np = 0.6,
nr =01, ¢ =095 0 =058 r=0.1and A =1.0. Set 2: np = 0.6, n;, = 0.1,
¢ =0.50, 0 =0.20, r = 0.5 and A = 1.0.

cases are cured with an efficacy relative to T cases defined by the parameter 9. It is then
expected that infective individuals Tz remain in the population, even though in the case
of high efficacy treatments.

To check the impact of antibiotics use in the evolution of tuberculosis dynamics, we
tested two scenarios with two sets of parameters: set 1 = {¢ = 0.95,0 = 0.58,r = 0.1, A =
1.0}; set 2 = {¢ = 0.50,0 = 0.20,7 = 0.1, A = 1.0}. The evolution of TB for these cases
is depicted in figure 7.

The first set of parameters with ¢ = 0.95, ¢ = 0.58 and r = 0.1 represents a health
care system in a developed country. The treatment and the chemoprophylaxis efficacy are

doi:10.1088/1742-5468/2011/05/P05003 11
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Figure 8. Evolution of tuberculosis during 300 years with treatment and
chemoprophylaxis starting at year 200 with only local interactions, A = 1.0,
and only global interactions, A = 0.0. Time series from 0th year up to 299th year
is omitted. Only T cases are shown in this figure. Inset: steady state for Tg
individuals from 250th year to 300th year. Parameters are: ¢ = 0.50, ¢ = 0.20
and r = 0.5.

high and are combined with a low probability of emergence of drug resistance. Thus, on
the one hand, in this first scenario one has the cure for 100% of T cases in 60 years after
the beginning of the treatment plus a low and stable endemic level for T cases.

On the other hand, the second set of parameters with ¢ = 0.50, ¢ = 0.20 and r = 0.5
represents a health care system in a developing country, with low efficacy of treatment
and chemoprophylaxis in comparison to those of a developed country, combined with
50% probability of treatment failure. In this second scenario, even 100 years after the
beginning of treatment, several cases of infective T’ still remain in the population. Besides
the high prevalence of T cases due to a low effective intervention (¢ = 0.5, o0 = 0.2 and
r = 0.5), the emergence of drug resistance is very high. Therefore, low effective health
care strategies do not solve the main problem, in this case TB cases with S type bacteria,
and they also create a new and worse problem, a high prevalence of TB cases with R type
bacteria.

The parameter A controls the intensity between local and global effects. Therefore, to
check the influence of this parameter in the system dynamics, we show in figures 8 and 9
the steady state for Ts and Tk, respectively, for two cases: A = 1.0 (only local effects)
and A = 0.0 (only global effects).

Figure 8 depicts the evolution of the system during 300 years with treatment and
chemoprophylaxis starting at year 200. In this figure, two curves are shown for T cases,
one for local interactions only (squares) and another for global interactions only (solid
squares). The upper part of figure 8 is a zoom from the 250th up to the 300th year and
it shows the steady state of Tg cases for A = 1.0 and 0.0. When only local interactions
are taken into account (A = 1.0), it is clear that the endemic state is higher than in the
case where only global interactions are present (A = 0.0).

doi:10.1088/1742-5468/2011/05/P05003 12
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Figure 9. Evolution of tuberculosis during 300 years with treatment and
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and only global interactions, A = 0.0. Time series from Oth year up to 299th
year is omitted. Only Tk cases are show in this figure. Parameters are: ¢ = 0.50,
o =0.20 and r = 0.5.
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Figure 9 presents T cases for local-only and global-only interactions from the 200th
to the 300th year in both curves. The amount of Tk cases depends upon the pool of
available T individuals who might have treatment failure. Then, as Ts cases are higher
for local interactions only (A = 1.0), the amount of T cases will be higher as well.

The reason why local interactions only (A = 1.0) favor a higher prevalence of Tg
and Tx cases can be understood by looking at figure 10. This figure depicts the time
evolution of the average local probability, (P,), and the average global probability, (Fg),
evaluated by equations (3)—(6), respectively. At time ¢, the local probability, P,(i,j) is
calculated for all X individuals placed in the coordinates (i,7) of the lattice. Then, all
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Figure 11. Tg and T'r cases as a function of the proportion of infective individuals
that receive treatment, np. The values presented in the figure are from the
220th year. Treatment and chemoprophylaxis start at year 200. Parameters are:
ny = 0.2, ¢ = 0.50, 0 = 0.20, r = 0.5 and A = 1.0.

probabilities are summed, Z(@ i) Pr(i,j), and divided by the total of X individuals. The
same procedure is performed for the calculation of the global probability Pg(i, 7).

Figure 10 clearly shows that the average local probability is higher than the average
global probability during the evolution of the system. The values (P;) > (Pg) explain
why in figures 8 and 9 the endemic states for both Ts and 7% cases are higher for the
scenario with local interactions only (A = 1.0).

As already defined in section 3, parameters o and ¢ are the probability that
chemoprophylaxis therapy is effective and the probability of effective treatment for
infectious individuals, respectively. In our model, these parameters are adjusted in order
to simulate different scenarios regarding the efficacy of the chemoprophylaxis therapy
and antibiotics treatment. In other words, this means that ¢ and ¢ are predetermined
instead of being a consequence of the system dynamics. Thus, np, the proportion of
infective individuals that receive treatment, and ny, the proportion of latent individuals
that receive chemoprophylaxis, are key control parameters from the point of view of health
care system intervention.

In figure 11 one can see the endemic state of TB as a function of the proportion of
infective individuals that receive treatment, np. The values presented in the figure are
from the 220th year, i.e. 20 years after the beginning of treatment and chemoprophylaxis.
For all values of ny, the proportion of latent individuals that receive chemoprophylaxis is
kept constant, n;, = 0.2.

When there is no individual under treatment in the system, ny = 0, the prevalence
of TB cases with type S bacteria is very high. But there are no cases involving type R
bacteria, because the emergence of resistant strains is due to treatment failure. As the
proportion of individuals under treatment increases, Tr cases emerge and there is a peak
around ny =~ 0.15. On the other hand, for ny > 0.15 the amount of Ty individuals that
are cured increases, consequently, the cases of T have to diminish. Nevertheless, even for
ny = 1.0, i.e. all sick individuals are under treatment, there are still a few remaining T
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Figure 12. Ts and Tk cases as a function of the proportion of latent individuals
that receive chemoprophylaxis, ny. The values presented in the figure are from
the 220th year. Treatment and chemoprophylaxis start at year 200. Parameters
are: np = 0.6, ¢ = 0.50, 0 = 0.20, » = 0.5 and A = 1.0.

and T cases. This behavior is a consequence of the probability of effective treatment for
infectious individuals ¢ < 1.0.

The plotting of the endemic state of TB as a function of the proportion of latent
individuals that receive chemoprophylaxis, ny, can be seen in figure 12. The values
presented in the figure are from the 220th year, i.e. 20 years after the beginning
of treatment and chemoprophylaxis. For all values of ny, the proportion of infective
individuals that receive treatment, ny, is kept constant, ny = 0.6.

In figure 12 one can see that the total of Ty and Tk cases are diminishing as nj,
increases. There are two interesting results that can be seen in this figure. The first
and more important result is that for n; = 0.38 the population is free of T cases! In
other words, when only 38% (ny = 0.38) of the latent individuals in the population receive
chemoprophylaxis, the type S bacteria vanish! This suggests that the public health policies
should pay more attention to the prevention of TB as soon as the M. tuberculosis has been
detected in a person. The second interesting result is the steady prevalence of Tx cases
for ny > 0.18. This behavior is explained because in our model chemoprophylaxis therapy
has no effect in latent individuals with R bacteria, Lg.

5. Conclusion

Here we proposed an agent-based model for the spread of tuberculosis and the emergence
of drug resistance due to the use of antibiotics. The model is based on the interactions
among individuals placed on the sites of a square lattice. Different from models based
on differential equations, the spatial structure is taken into account in this model. These
individuals can be in one of five states of the disease: susceptible (X), latent with type S
bacteria (Lg), latent with type R bacteria (Lg) and active tuberculosis with type S (Ts)
and type R (Tr) bacteria. This approach has allowed us to deal with the problem with
more refinement than the existing models based on differential equations.
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Our approach was validated by reproducing results already known from the literature.
In the simulations different regimes of treatment have been tested. These different
regimes showed how inefficient treatments can create conditions for the emergence of drug
resistance. We also showed how locality and non-locality (local or global interactions)
affects the model, resulting in different prevalences of the disease. Once the model has a
spatial structure, the different patterns of TB spread can be visualized at any time of the
system evolution.

There are several possibilities to extend the model presented here. A straightforward
modification would include a state of coinfection of tuberculosis. In this extension,
individuals could be infected with type S and R bacteria simultaneously, which creates
a new state Tsg. A second possible modification of the model would consider changes in
the topology of the lattices in which individuals are located. We could study the spread
of tuberculosis when the contacts between individuals would be, for example, in lattices
of the type small world or scale free [20].

A more sophisticated variation of this work would focus on the emergence of drug
resistance through the development of within-host pathogens. In other words, the status
of each individual would not be defined by transitions related to certain probabilities,
but the number and type of pathogens that they have within themselves. In the case of
tuberculosis, latent and infectious states were determined by the amount of pathogens in
each of the individuals.
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