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M. Mendoza1, N. A. M. Araújo1, S. Succi2,3 & H. J. Herrmann1,4

1Computational Physics for Engineering Materials, IfB, ETH Zürich, Schafmattstrasse 6, CH-8093 Zürich, Switzerland, 2Instituto per
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We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under
increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the
bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal
energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein,
the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative
behavior. We characterize the nature of the transition in the framework of critical phenomena and show that
it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one,
two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in
graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

B
ack in 1911, F. Jüttner derived a relativistic analogue of the Maxwell-Boltzmann equilibrium distribution
for classical (non-relativistic) gases. To this purpose, he resorted to an entropy minimization procedure,
subject to the relativistic energy-momentum constraints1. This top-down (macro-to-micro) derivation, left

room for some debate on whether the exact form of the equilibrium distribution for relativistic particles was the
one proposed by Jüttner, or rather some variant thereof2–4. Very recently, conclusive evidence for the original
form proposed by Jüttner has been brought by numerical simulations of fully relativistic molecular dynamics in
one, two, and three dimensions5–7. This is all but an academic exercise, since the Jüttner distribution is known to
play a major role in the interpretation of current and future experiments in many sectors of modern physics, such
as quark-gluon plasmas produced in heavy-ion collisions8, relativistic astrophysics9, distortions of the cosmic
microwave background10, and lately, possibly also in the study of electron flows in graphene11,12.

In this article, we wish to call the attention on a special property of the Jüttner distribution, namely the fact
that, under the constraint of an increasing temperature (ultrarelativistic limit mc2 , kBT), the one-dimensional
distribution develops a transition in velocity space, with the emergence of two separate peaks, moving with opposite,
non zerospeeds. For two and three dimensions, it generates, in velocity space, a ring and a hollow sphere (see
figure 1), respectively. Physically this corresponds to a transition between a regime where kinetic energy is mainly
stored increasing the velocity and where this is done by enhancing the mass. This stands in sharp contrast with the
way a non-relativistic gas at rest responds to the constraint of an increasing temperature, namely through a
progressive broadening of the Gaussian shape, which enhances the high-speed population, leaving nonetheless
the least-energetic, zero-speed, particles as the most probable population, since this is the one best conforming to the
zero net-motion constraint. On the contrary, the transition exhibited by the Jüttner distribution, signals that, even in
a gas at rest, the temperature constraint can only be met by clustering most of the particles around two oppositely
moving beams, thereby depleting the zero-speed particles in the process. The above considerations readily generalize
to the case of a moving gas, the main change being that the two oppositely moving beams get differently populated,
the co-moving one being enhanced and the counter-moving being correspondingly depopulated. This phenomenon
is quite general, and it might apply to a whole class of systems where physical signals are forced to move close to the
their ultimate limiting speed. In the following, we provide mathematical details of this transition and also discuss
conditions under which it could be experimentally probed in graphene experiments.

Results
Transition in the probability distribution. The probability distribution function of particle velocities in d-
dimensional relativistic gas is described by the following single-particle distribution function (in natural units
(c 5 5e5kB5m5 1) and Cartesian coordinates)6,13:
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is the Lorentz factor, T the temperature, ~U the group velocity, A a
normalization constant, v~~vj j, and U~ ~U

�� ��. The subscript l denotes
the Fermi-Dirac (l51), the Bose-Einstein (l521), and the
Maxwell-Jüttner (m50) distributions, respectively. At the moment,
we will neglect the chemical potential (m50). The thermal behavior

of a relativistic gas at equilibrium is best characterized by the
parameter j ; mc2/kBT 5 1/T, that is commonly used to dif-
ferentiate between the ultra-relativistic (j?1) and the relativistic
(j=1) regimes.

Under the constraint of a limiting velocity imposed by the theory
of relativity, the three distributions share an interesting property in
the temperature dependence. In particular, above a critical temper-
ature (Tc 5 1/jc), the shape of the function changes from a nearly
Gaussian to bimodal (see figure 2). As a result, while below the
critical temperature the majority of the particles move at speeds close
to the group velocity U (zero in figure 2), above criticality two popu-
lations of particles emerge, with a velocity distribution sharply
peaked around opposite speeds, close to the speed of light. Here,
we show that this change in the functional dependence of the velocity
distribution can be described in the framework of a transition, which
might be either discontinuous (first order) or continuous (higher
order), depending on the group velocity U. In two and three dimen-
sions, the same qualitative behavior is observed, where, instead of
two peaks, a ring (in two dimensions) and a hollow sphere (in three
dimensions, see figure 1) is obtained at higher temperatures. In both
cases, at sufficiently high temperatures, the radius in velocity space
reaches the value corresponding to the speed of light (see figure 1).

To characterize the transition, we introduce an order parameter
defined as the distance D between the peaks, such that D 5 0 in the
single peaked distribution andD? 0 in the bimodal one. Let us begin
by considering the case U 5 0, and measure the order parameter
dependence on the temperature, T 5 1/j, as shown in figure 3(a).
From this figure, we can appreciate that, below the critical temper-
ature Tc 5 1/jc, the distribution function has only one peak, D 5 0,
while above Tc, a bimodal profile develops, with the order parameter
growing from zero to an asymptotic value D 5 2. In this limit, the
width of the distribution shrinks to zero and the distribution is a
superposition of two Dirac deltas, literally corresponding to a dis-
crete fluid moving at 6c. It is noteworthy that, while in the low
temperature regime (T , Tc) the dispersion in velocity around the
peak increases with T, above the critical temperature it vanishes in
the limit T R ‘.

In the inset of figure 3(a), we analyze the singularity at T 5 Tc,
namely, we plot the order parameter dependence on the rescaled
control parameter 1/j 2 1/jc. A continuous transition is observed,
with the order parameter being zero at the critical temperature and
growing according to a power law D , (1/j 2 1/jc)0.5 above it. This
exponent corresponds to the inverse of the exponent d in the theory
of critical phenomena14. The same qualitative behavior is observed in
two and three dimensions. Below, we describe the way the exponent
and critical temperature can be obtained analytically, in the limit
U R 0.

Due to the fact that the aforementioned transition is driven by the
cd12 pre-factor in the distribution, which is symmetric around v 5 0
in velocity space, one can, without loss of generality, calculate D
(diameter of the ring, for d 5 2, or of the hollow sphere, for d 5 3)
along the direction vx. In the limit U 5 0, from the calculation of the
maxima of the distribution, equation (1), one obtains the trivial
solution vx 5 0 and two additional ones, corresponding to the solu-
tions of the algebraic equation,

2zdð ÞTlzec vð Þ=T 2zdð ÞT{c vð Þð Þ~0: ð2Þ

Since D 5 jvx1 2 vx2j, where vx1 and vx2 are the two non-zero solu-
tions, we obtain

D~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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where q 5 (2 1 d)e2(21d)l and W(x) is the Lambert W-function.
From this equation, we can also obtain the critical temperature as,

Figure 1 | Three-dimensional Maxwell-Jüttner velocity distributions,
according to equation (1), for two different temperatures. The blue

(j 5 20) and gray (j 5 1) isosurfaces stand at 1/3 and 1/4 of their respective

maxima. Shown in the inner region of each isosurface, is the color gradient

of the distribution, with red and blue colors denoting high and low

concentration of particles, respectively. Note that the spheres are plotted in

velocity space, so that the maximum radius for the external isosurface is

close to ~vj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

xzv2
yzv2

z

q
~1.

Figure 2 | Bose-Einstein (l 5 –1), Maxwell-Jüttner (l 5 0), and Fermi-
Dirac (l 5 1) velocity distributions, for d 5 1, according to equation (1).
The distributions correspond to a relativistic fluid, with group velocity U

5 0 and two different temperatures (T 5 1/j), namely, j 5 1 and j 5 20.
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where, in the case of the Maxwell-Jüttner distribution (l 5 0), i.e.,
q 5 W(q) 5 0, and so Tc 5 1/(d 1 2). In general, for this distribution,
the temperature dependence of D is given by,

D~
2

ezTc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e ez2Tcð Þ

p
, ð5Þ

with e 5 T 2 Tc. For T *> Tc, D*
ffiffiffiffiffiffiffiffiffiffiffi
8e=Tc

p
, where the exponent is 1/2,

in excellent agreement with the numerical data in the inset of
figure 3(a). This exponent depends neither on the spatial dimension,
nor on l, i.e., it is the same for the three distributions. However, the
critical temperature Tc depends on these quantities, and can be
obtained analytically for each value of d and l.

Figure 3(b) shows the numerical results for the temperature
dependence of D at different group velocities U, for the Maxwell-
Jüttner distribution. For any U ? 0, a jump on D is observed at the
onset of the transition, resembling thermal first-order transitions. In
figure 4, we plot the size of the jump Dj as a function of U, where a

power law is obtained Dj , Ub, with b 5 0.32 6 0.02. This exponent
corresponds to the order parameter exponent b in the theory of
critical phenomena14. Within the error bars, the same exponent
was obtained for all combinations of l and d, suggesting that b is
independent of these two parameters. Nevertheless, as shown in the
inset of figure 3(b), the transition temperature increases with U and
decreases with d.

Example in condensed matter. The above transition is not
transmitted to the conserved macroscopic quantities (energy-
momentum) and consequently, it is not straightforwardly observed
at the macroscopic level. Instead, a microscopic analysis is required.
In order to experimentally detect the transition, thermal energies
of the order of the rest energy of the gas particles (j , 1) would
be required. This could be achieved, for example, in hot electron
plasmas. In particular, it is of great interest to explore whether this
transition can contribute to a deeper understanding of small con-
densed matter systems with potential technological applications. A
good candidate in this respect is graphene. Since its discovery15,16,
graphene has continued to surprise scientists with an amazing
series of spectacular properties, such as ultra-high electrical con-
ductivity, ultra-low viscosity to entropy ratio, combination of ex-
ceptional structural strength and mechanical flexibility, and optical
transparency. It consists of literally a single carbon monolayer and
represents the first instance of a truly two-dimensional material (the
‘‘ultimate flatland’’17), where electrons move like massless chiral
particles and their dynamics is governed by the Dirac equation,

following the dispersion relation, E ~k
� �

~s vF
~k
��� ���, where ~k~

kx,ky
� �

is the wave vector. The constant s 5 61 distinguishes
between electrons (1) and holes (–), and vF is the Fermi velocity
that plays the same role in graphene as the speed of light in
relativity18,19. This relation implies that carriers always move at the
same Fermi speed, regardless of the Fermi energy. For simplicity, we
will work only with the electronic density (s 5 1), the extension to
include holes being straightforward.

In our context, pristine graphene corresponds to the ultra-
relativistic limit, where the velocity distribution function consists
of two Dirac deltas at 6vF, so that the transition cannot be observed.
However, the electronic spectrum of graphene changes depending on
the substrate. For example, on SiC the energy spectrum presents a
gap of width 2mv2

F~0:26 eV and on h-BN (hexagonal boron nitride)
a gap of 53 meV20–22, and can be manipulated by constructing gra-
phene nanoribbons, where the energy gap depends on the width of
the ribbon23,24.

A gap in the spectrum of graphene corresponds to non-zero mass

of the electrons, so that the dispersion relation becomes Ea
~k
� �

~

vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2za2

p
, where a 5 mvF/ . With this dispersion relation, the

velocity of the electrons can be calculated as ~v~ 1=ð ÞLE ~k
� �.

L~k,

thus obtaining,~v~vF
~k
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2za2
p

. Note that the velocity is no longer

constant and depends on the Fermi energy via ~k. The electronic
density n is defined by

n~

ð
f ~k
� � d2k

4p2
, ð6Þ

where f ~k
� �

~ 1z exp E ~k
� �

{m
� �.

kBT
� �h i{1

is the Fermi-Dirac

distribution. To calculate the density of states in velocity space, we
change variables, from the wave to the velocity vector spaces, obtain-
ing n~

Ð
D ~vð Þf ~vð Þd2v, where D ~vð Þ~a2c4

�
2pð Þ2vF is defined as the

density of states (DoS). The Fermi-Dirac distribution function takes
the form,

f ~vð Þ~ 1
1z exp jc vð Þ{gð Þ , ð7Þ

Figure 3 | Temperature dependence of the order parameter. (Top panel)

Temperature (T 5 1/j) dependence of the order parameter D, defined as

the distance between peaks, for the Maxwell-Jüttner distribution (l 5 0),

in different spatial dimensions d and group velocity U 5 0. Shown in the

inset is a double-logarithmic plot of D as a function of the rescaled control

parameter 1/j–1/jc, where j0 stands for the transition temperature.

(Bottom panel) Temperature dependence of the D for different group

velocities. The inset shows the transition temperature Tc 5 1/jc

dependence on the group velocity U.
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with g5m/kBT, and the parameter j now defined as j~mv2
F

�
kBT .

Note that the DoS tends to push all the particles moving at the Fermi
velocity, while the Fermi-Dirac distribution counters this effect,
given the limit imposed by the Fermi speed. At low temperature,
the chemical potential can be approximated by the Fermi energy25,
EF, which can be tuned experimentally by a gate voltage for low
concentration of electrons26. Since low temperatures are required,
to avoid electron-phonon interactions, we characterize the transition
of the velocity distribution functions by changing the Fermi energy,
i.e. g, instead of the temperature. With this change in the control
parameter we also have the advantage that the speed at which the
Fermi-Dirac distribution attains its maximum corresponds, to a
good approximation, to the maximum speed at which carriers can
move (see inset of figure 4). Therefore, we expect that the transition
could be observed by measuring the thermal or Johnson-Nyquist
noise27–29. Let us assume that we have a typical sample of graphene
on h-BN, and the electronic density is manipulated with an external
gate voltage by the relation n^kg30, where k is a proportionality

constant that depends on the electric capacitance of the substrate
and the temperature. Thus, for low carrier concentration, even if
there is no drain voltage, there are current fluctuations dI around
zero due to the thermal motion of the electrons in the sample. The
maximum amplitude for these fluctuations can be written as
dImax5envmaxl, where e and l are the electric charge of the electrons
and the cross section of the sample, respectively. We define the
dimensionless maximum amplitude for the current fluctuations as
C 5 2dImax/enlvF.

For a fixed low temperature, we can observe from figure 5 that
there is a critical gc above which C emerges. This critical value
increases with decreasing temperature. We have considered different
temperatures, T 5 20, 30, 50 K. Note that the critical gc 5 1.05j 1

0.26, is almost the same as j, by a proportionality constant 1.05, and
the residual is just due to the non-linear behavior of the curve, close
to the critical temperature where, due to the thermal energy, the
thermal noise appears, regardless of g. Note that this expression is
tantamount to stating that the Fermi level must be higher than half of
the gap energy in order to have electrons in the conduction band. The
exponent of the continuous transition is also 0.5, and is independent
of the temperature of the sample in the regime of low temperatures.

Some transport properties in graphene also depend on the velo-
city instead of the momentum, e.g. saturation current in ballistic
regime31,32. Since electrons in pristine graphene always move at the
Fermi speed, which is constant, the presence of a bias potential will
mainly increase the concentration of carriers and change the dir-
ection of motion of the carriers (not their speed). Consequently,
the saturation current is achieved when most of the carriers move
along the direction of the electric field. When the graphene sample
presents a gap, for low bias voltage, the maximum velocity achieved
by the carriers is mainly dominated by the Fermi level, following the
curve in the inset of Fig. 5. Therefore, the quantity D/2 (with D the
separation between peaks for the velocity distribution of carriers)
plays an important role in the determination of the saturation elec-
trical current of the sample. This shows that it is plausible to expect
that the transition in the Fermi-Dirac distribution discussed in this
article might help understanding (some of) the spectacular prop-
erties of graphene. Furthermore, with the aim of building graphene
transistors at the nanoscale, the study of the transport properties of
nanoribbons (GNR)23,24 has become very popular, where under-
standing the individual carrier dynamics might be relevant33.

Discussion
Summarizing, we have shown that the equilibrium distribution for
relativistic particles, no matter whether classical or quantum, exhibits
a transition as the temperature is brought close to the rest energy
(ultra-relativistic limit). This transition is the organized response of
the distribution of particles to the constraint of an increasing tem-
perature, compatibly with the existence of a limiting speed for the
propagation of physical signals. We have also discussed conditions
under which such transition could potentially be detected in current
and future graphene experiments. In the case of graphene, we have
found that the transition takes place, not only by increasing the
temperature, but also by increasing the Fermi energy at constant
low temperature. In principle, we expect the same qualitative beha-
vior in any system in which an equivalent of the Fermi energy (or
chemical potential) could be defined.

Methods
Results for U 5 0 and m 5 0 were obtained by algebraically solving the distribution
functions and their maxima, while for the other cases the maxima were computed
numerically.
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