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ABSTRACT

A set of N points is randomly spread in a d-dimensional hypercube of unitary edges. The neighborhood statistics among any pair of
points is known as the “random point problem” (RPP). A walker can move over these points following the deterministic rule of going,
at each time step, to the nearest site not visited in the previous μ steps. This partially self-avoiding walk is known as “deterministic
tourist walk” (DTW). Here we present some results on the RPP and on dynamic aspects of the DTW.
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2 DETERMINISTIC TOURIST WALK

1 INTRODUCTION

Random walks over regular latices and random media have been
often studied and have wide range of applications [1, 2, 3].
Although not so thoroughly investigated, deterministic walks in
regular [4, 5, 6] and disordered media [7] also present very inte-
resting results. Here, we are interested in a partially self-avoiding
deterministic walk algorithm, which we call the deterministic
tourist walk (DTW) [8, 9].

A standard way to construct a disordered medium consists in
randomly spreading N points (with coordinates uniformly distri-
buted along the edges) on a d-dimensional hypercube. The de-
termination of the distance and neighborhood statistics between
any pair of points is known as the random point problem (RPP).
One can consider these points as sites in a random landscape
and a walker can move on them. Following the deterministic rule
of, at each discrete time step, going to the nearest site not visi-
ted in the previous μ steps, a walker performs a partially self-
avoiding walk, where self-avoidance is limited to the memory
window τ = μ − 1. This quantity represents a characteristic
time to the site to become attractive to the walker again (refractory
time) and prohibits a trajectory from intersecting itself inside this
memory window.

The tourist behavior depends strictly on the data set configu-
ration. The tourist movements are entirely performed based on a
neighborhood table. This table represents the tourist graph , i.e.,
nodes with μ − 1 fixed directed and weighted outgoings each
and with a variable number of incomings. Notice that the distan-
ces among the sites is simply a way to rank their neighborhood.

The paper is organized as follows. In Section 2, we present
a study of the static characteristics of the underlying random me-
dium on which the DTW is performed. Some geometrical proper-
ties are shown. In Section 3, the dynamics of the DTW is presen-
ted, showing its behavior when the memory μ and the dimension
d are combined. Conclusions are presented in Section 4.

2 RANK NEIGHBORHOOD STATISTICS

The probability P(d,N )
m,n that an arbitrary point is the mth nearest

neighbor of its own nth nearest neighbor in the RPP has been ini-
tially studied by Clark and Evans [10] and Clark [11] on some as-
pects of spatial pattern in biological populations. Figure 1 shows
a geometrical representation for d = 2. They devised the term
reflexive neighbors for the case m = n. Their work has been
corrected by Dacey [12] (m, n > 1) in the context of geographi-
cal analysis and then generalized (for m 6= n) by Cox [13]. We
call P(d,N )

m,n the Cox probabilities . We have calculated [14] these

probabilities using only Poisson distribution instead of the vari-
ous distinct distributions used in the original paper [13]. Unlike
Cox, we have written the resulting expression in terms of known
functions (rather than in terms of an integral) and known distribu-
tions (multinomial, binomial and hypergeometric).

Figure 1 – Two-dimensional Poissonian process. There are i points in the in-
tersection of the surfaces and in the I and J crescents there are n − 1 − i and
m − 1 − i points, respectively.

In the following, we show the Cox probabilities for a finite
number of dimensions. Then, we compute its high dimensional
limit, that leads to the random link model (RLM). Also the random
map model (RMM) is presented.

2.1 Cox probabilities in finite dimensionality

The original form of Cox probabilities is written as:

P(d)
m,n =

min(m−1,n−1)∑

i=0

(m + n − 2 − i)!

i !(m − 1 − i)!(n − 1 − i)!

×
(1 − Id)i I m+n−2−2i

d

(1 + Id)m+n−1−i

(1)

with m = 1, 2, . . . , ∞, n = 1, 2, . . . , ∞ and

Id = I1/4

(
1

2
,

d + 1

2

)
(2)

where

Iz(a, b) =

∫ z
0 dt ta−1(1 − t)b−1

B(a, b)

with Re(a) > 0, Re(b) > 0 is the normalized incomplete beta
function [15]. Geometrically, Id represents the relative volume of
the crescent compared to the hypersphere in a poissonian pro-
cess, as shown in Figure 1 for d = 2 [14]. Notice that Id de-
pends exclusively on the dimensionality d of the RPP. Letting i
vary from 1 to min(m, n) and rearranging the terms, one is able
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to rewrite Eq. 1 as:

P(d)
m,n

P(d)
1,1

=
min(m,n)∑

i=1

Mult
(

i − 1, m − i, n − i;

1 − Id

1 + Id
,

Id

1 + Id
,

Id

1 + Id

)
(3)

P(d)
1,1 =

1

1 + Id
, (4)

where P(d)
1,1 is the couple density (mutually nearest neigh-

bors) and Mult (na, nb, nc; πa, πb, πc) = (na + nb +
nc)! π

na
a π

nb
b π

nc
c /(na ! nb! nc!) is the multinomial distribution.

2.2 High dimensionality probabilities and
random link model

The distances between any pair of points are not all independent
random variables, due to boundary effects and triangular restric-
tions. For fixed N in the RPP, as d increases, the boundary ef-
fects become more pronounced and the distances between pair
of points become less correlated. Boundary effects can be mini-
mized considering periodic boundary condition and, in the limit
d → ∞, all the two–point distances are independent and iden-
tically distributed (i.i.d.) random variables. This is the random
link model (RLM) [16, 17], which is a mean field description
of the RPP. We stress that in the RLM, there exist two Euclidean
constraints: (i) the distance from a point to itself is always null
(Dii = 0, for all i ) and (ii) the forward and backward distances
are equal (Di j = D ji , for all i , j ).

The high dimensionality limit for the Cox probabilities can
be obtained directly from Eq. 3. In the thermodynamic limit
(N � 1), the multinomial distribution becomes:

P(rl)
m,n

P(rl)
1,1

= Bin
(

m − 1, n − 1,
1

2
,

1

2

)
(5)

P(rl)
1,1 =

1

2
, (6)

where Bin(na, nb; πa, πb) = (na + nb)!π
na
a π

nb
b /(na !nb!)

is the binomial distribution. Simple expressions can be obtai-
ned such as: P(rl)

1,n = 1/2n , P(rl)
2,n = n/2n+1.

Since here, Euclidean distances are only a means to obtain
the ranking neighborhood probabilities, it is independent of par-
ticular choice for the distance probability distribution function
(pdf) [18]. For simplicity, we will consider uniform deviates in
the interval [0, 1] for the distances among the N points. In the

random link case, one is able to obtain the Cox probability for a
finite system. To take into account finite size effects, just replace
the binomial distribution of Eq. 5 by:

P(rl,N )
m,n

P(rl,N )
1,1

= Hypg (N − 2, N − 2; m − 1, n − 1) (7)

P(rl,N )
1,1 =

N − 1

2N − 3
, (8)

with m = 1, 2, 3, . . . , N − 1 and n = 1, 2, 3, . . . , N − 1,
where

Hypg(Na, Nb; na, nb) =

(
Na

na

)(
Nb

nb

)

(
Na + Nb

na + nb

)

is the hypergeometric distribution. Obviously, these equations
(Eqs. 7 and 8) reduce to Eqs. 5 and 6 as N � 1.

We observe that one can use the determinism of the algorithm
of pseudo random number generator to obtain very large random
link model data sets [19]. Up to date, we have not being able to
consider finite size effects for Eq. 3 and 4. One must generalize
the hypergeometrical distribution so that for N � 1 one obtains
the multinomial one.

2.3 Random map model

Breaking the distance symmetry constraint in the RLM the ran-
dom map model (RMM) [20] is obtained. The RMM is the mean
field approximation to the Kauffman’s model [21] and analytical
results may be obtained. Also, Cox probabilities can be obtained
for the RMM.

In the case in which the constraint Dii = 0, ∀i is preserved,
if an arbitrary point I is chosen, its mth neighbor J is automa-
tically set, but the nth neighbor of J is equally probable to be
anyone of the other N − 1 points, since the distances are totally
independent. Thus, the probability P(rm)

m,n that the point I is the
nth neighbor of its mth neighbor is simply:

P(rm)
m,n =

1

N − 1
, (9)

where m = 1, 2, . . . , N − 1 and n = 1, 2, . . . , N − 1.
On the other hand, in the case which Dii 6= 0 is allowed,

the probability P(rm)
m,n is twice as large for reflexive neighbors

than for non-reflexive ones, because now one must consider that
every point is always its own mth nearest neighbor, for some m.
Therefore:

P(rm)
m,n =

1 + δm,n

N + 1
, (10)
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where δm,n is the Kronecker’s delta, m = 1, 2, . . . , N and
n = 1, 2, . . . , N . Notice that in the thermodynamic limit
N � 1, these cases are still distinguishable due to the presence
of the factor 2 for the reflexive neighbors.

3 SOME RESULTS ON THE DETERMINISTIC
TOURIST WALK

All DTW have an initial transient part of length t and end in cy-
cles. Each cycle has a period p. Both transient time and cy-
cle period can be combined in the joint distribution S(N )

μ,d (t, p).
In the following we consider some special cases obtained combi-
ning μ and d .

3.1 Lazy tourist

The simplest case to deal with the DTW is to consider μ = 0.
In the following we present the result for an arbitrary dimensiona-
lity and for the random map model.

3.1.1 Arbitrary dimensionality Euclidean space

This case is trivial, since the walker has a null-size memory.
The walker remains at the same site and the trajectory has a zero-
length transient and a cycle of period p = 1. The transient and
period joint distribution is simply given by:

S(N )
0,d (t, p) = δt,0δp,1 , (11)

where δi, j is the Kronecker’s delta.
Despite its triviality, this becomes interesting because it is the

simplest situation of the stochastic tourist walk [22]. Also, in the
deterministic situation, the μ = 0 case can be analytically solved
and presents non-trivial solutions for the RMM, as we see below.

3.1.2 Random map

In this model, the lazy tourist may not exist, since the distance,
which may be interpreted as the cost, can be greater to remain
in a site than going away, in this case the walker may not stay at
the same site. Thus, even for μ = 0, non-trivial transient time
and cycles distributions may exist. Indeed, the transient time and
period cycles joint distribution for a random map with N points
is [18]:

S(N )
0,rm(t, p) =

0[N ]

0[N + 1 − (t + p)]N t+p . (12)

We call attention to the fact that the relevant variable is
ne = t + p, which is the number of explored sites along the

trajectories. The period distribution is simply:

S(N )
0,rm(p) =

∑

t

S(N )
0,rm(t, p),

and for N � 1, it can be approximated by:

S(N )
0,rm(p) =

√
π

2N
erfc

(
p

√
2N

)
≈

e−p2/(2N )

p
, (13)

where it is interesting to point out that for p �
√

2N the
period distribution decays as a power law: S(N )

0,rm(p) ≈ p−1,
independently of the size N of the system.

3.2 Memoryless tourist

For μ = 1, the walker knows only the nearest neighbor of the
current site. Thus, at each time step, he must leave the current
site and go to the nearest one. The name “memoryless tourist”
is devised because the walker knows the site he is, but does not
remember any of the previously visited ones. This rule does not
lead to exploration of the random medium, since after a very short
transient time the walker gets trapped by a couple of mutually
nearest neighbors. These couples are the attractors of the sys-
tem, and the period distribution is simply

S(N )
1,d (p) =

∑

t

S(N )
1,d (t, p) = δp,2.

The transient time and period joint distribution has been analyti-
cally obtained for N � 1 [18]:

S(∞)
1,d (t, p) =

0(1 + I −1
d )(t + I −1

d )

0(t + p + I −1
d )

δp,2 , (14)

where 0(z) is the gamma function an Id is given by Eq. 2.

3.3 Tourist with memory

Interesting phenomena occur when grater values of μ are consi-
dered. In this case, the cycle distribution is no longer peaked at
pmin = μ + 1, but presents a whole spectrum of cycles with
period p ≥ pmin, with possible power-law decay [8, 9, 23].

3.4 One-dimensional systems

It is interesting to point out that, for 1D systems, determinism im-
poses serious restrictions, as we discuss below.

3.4.1 Very short memory

For μ � N , cycles of period p ∈ [2μ + 1, 2μ + 3] are for-
bidden. Additionally, for μ = 2 all odd periods but pmin = 3
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are forbidden. The number of site per attactor is [8]:

n(p) =
p

2
+ τ + 1 . (15)

3.4.2 Crossover between localized and
extended regimes

As one can see in Figure 3, the heavy tail of the period margi-
nal distribution S(N )

μ,d (p) allows the walker to explore the whole
system even for small memory values (μ � N ). If a walker
starts to walk in one extremity of a 1D map, he can reach the other
extremity (using open boundary conditions) if he takes N steps
without changing its walking direction. So, he needs a memory
μ large enough to avoid being trapped in cycles. For a given me-
mory μ, this occurs with probability [24, 25]:

P(N |μ) =
(
1 − 2−μ

)N−μ−1
. (16)

Figure 2 shows the graphics of Eq. 16 for three values of N .
One can easily see the existence of an abrupt change in the wal-
ker’s exploratory behavior in 1D at a narrow memory range. Con-
sidering N � μ + 1 and computing the inflection point of
Eq. 16, one can determine the value of memory at which the tran-
sition takes place:

μ1 = log2 N . (17)

The width of the transition range is independent of N : ε =
e/ ln 2.

Figure 2 – Graphics of Eq. 16 for N =10, 100 and 1000. It is possible to see
the existence of an abrupt transition in the value of P(N |μ) at μ1 = log2 N
in a narrow memory range ε = e/ ln 2.

On one hand, for μ < μ1, the walker is trapped in cycles in-
side the system. The walker cannot reach the other extremity and
the exploration remains local. On the other hand, if μ > μ1,
the number of visited points increases, allowing the walker to
reach the other extremity and the exploration becomes global.

3.5 Higher dimensionalities

Figure 3 shows the t and p joint distribution histograms for
μ = 9 and μ = 25 with N = 1000 and d = 2. As ap-
plication of these deterministic walks, the cycles have been used
as a thesaurus characterization [23], a clusterization method [26]
and in texture analysis in images [27, 28].

3.6 Mean field approximation

The mean field approximation consists on making each point to
interact with the same intensity with all the others in the system. In
the following, we analyze two systems which have this feature: the
random link and the random map models. The first is the natural
high dimensional limit for the tourist walk problem. The second is
the only analytically solved case that has a non-trivial distribution
of cycles even for the lazy and memoryless tourist cases. Both
models have been studied for the tourist walk in Ref. [18].

3.6.1 Random link

As the number of dimensions of the euclidean space increases, the
correlations between distances weaken down. When d → ∞,
these correlations can be neglected and the distances between
points considered as independent random variables. In this mo-
del, the transient time distribution, in the thermodynamical limit,
to the memoryless tourist walk can be obtained taking the limit of
d → ∞ in Eq. 14:

S(∞)
1,rl (t) =

t + 1

(t + 2)!
. (18)

For μ = 2, the transient time and period cycle joint distribu-
tion is [29]:

S(N )
2,rl (t, p) =

e− (t+p−2)(t+p−3)/2
3N

(3 − δt,0)N
. (19)

The marginal distributions of transient time and period
are, respectively:

S(N )
2,rl (t) =

(
1 +

δt,0

2

) √
π

6N
erfc

(
t

√
6N

)
, (20)

S(N )
2,rl (p) =

√
π

6N
erfc

(
p − 7/2
√

6N

)
≈

e−p/(6N )

p
. (21)

We call attention to the fact that the decay of the transient time
distribution for μ = 1 is much faster than for μ ≥ 2. This
is due to the main mechanism, which is driven by extreme value
statistics in the μ = 1 case and by combinatorial statistics for
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(a) μ = 9 (b) μ = 25

Figure 3 – Joint distribution of transient time (t ) and period ( p) with N = 1000 and d = 2 for two values of μ. One observes that the general aspects
of both histograms are similar.

μ = 2. This change, from extreme value statistics to combina-
torial one, converts the δp,2 distribution for μ = 1 to a wide
period distribution power-law decay for μ ≥ 2 (Eq. 21). From
these considerations, one concludes that even a memory window
of a single step drastically favors the walker to explore the random
medium.

3.6.2 Random map

In this model, all symmetry restrictions are relaxed, and the dis-
tance from one point to itself is not necessarily null. So, for a
N -point map, there are N 2 independent random distances. The
transient time and period joint distribution and the period margi-
nal distribution for this case, with μ = 0, are respectively given
by Eq. 12 and Eq. 13. For the quantity ne = t + p, Eq. 12
becomes:

S(N )
0,rm(ne) =

ne0[N ]

0[N − ne − 1]N ne
. (22)

One can observe that this distribution diverges at the thermo-
dynamical limit.

3.6.3 Equivalence between the random link and
random map models

The random link and random map models are the mean field
approximations of the random point problem and Kaufmann’s
model, respectively. These models are very different in essence,
nevertheless their mean field approximations are similar. If one

compares Eq. 21 to Eq. 13, one sees a non-trivial equivalence
between RMM with 3N points and μ = 0 and RLM with N
points and μ = 2 [29].

4 CONCLUSION

Although less investigated than random walks, deterministic
walks also present very interesting results. In this paper we re-
vised the random point problems and the deterministic tourist
walks. For the random point problem, we have shown some geo-
metrical characteristics and the static properties of the medium in
which the DTW takes place. We have presented the behavior of the
DTW depending on the system dimensionality d and the walker’s
memory μ, pointing out the transient time and period joint distri-
butions and the existence of a crossover transition in 1D systems.
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