

Centro Brasileiro de Pesquisas Físicas

Estudo da desordem estrutural em óxidos de perovskitas duplas.

Jornada IC – 2019

Aluna: Tayane da Silva Portes

Orientação: Elisa Saitovitch e Cynthia Contreras

- INTRODUÇÃO (QSL EM PEROVSKITAS DUPLAS)
- TRABALHO EXPERIMENTAL
 - PREPARAÇÃO DE AMOSTRAS
 - DIFRAÇÃO DE RAIO X
 - MEDIDAS DE MAGNETIZAÇÃO
 - ESPECTROSCOPIA MÖSSBAUER

CONCLUSÕES

Ferromagnético (FM):

Antiferromagnético (AFM):

*** * * * * ***

Columnar

FRUSTRAÇÃO MAGNÉTICA – INTERAÇÕES AFM

COMPETIÇÃO ENTRE AS INTERAÇÕES

Modelo de Ising

- 6 estados fundamentais
- Sem perda de energia

Leon Balents. Nature volume 464, pages 199–208 (2010) Geometrical Frustration (R. Moessner and A. P. Ramirez), Phys. Today 59, 24 (2006)

LÍQUIDO DE SPIN QUÂNTICO (QSL)

- Estado quântico encontrado experimentalmente recentemente
- Spins flutuam de forma coerente mesmo em baixíssimas temperaturas

Perovskitas duplas de cobre

NAF (J1)

Interações magnéticas bidimensionais

6

O. Mustonen et al., Nature Communications - 9:1085 (2018)

ARTICLE

DOI: 10.1038/s41467-018-03435-1

Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite induced by $d^{10}-d^0$ cation mixing

O. Mustonen ⁽¹⁾ ¹, S. Vasala ⁽²⁾ ², E. Sadrollahi³, K.P. Schmidt³, C. Baines⁴, H.C. Walker ⁽²⁾ ⁵, I. Terasaki ⁽²⁾ ⁶, F.J. Litterst^{2,3}, E. Baggio-Saitovitch² & M. Karppinen ⁽²⁾

OPEN

$Sr_{2}Cu(W_{0.5}Te_{0.5})O_{6}$

- Desordem estrutural
- QSL encontrado nas redes de Cu

O. Mustonen et al., Nature Communications - 9:1085 (2018)

7

NOSSO TRABALHO

Estudo local através da Espectroscopia Mössbauer

Síntese de amostras $Sr_2(Cu_{1-x}Fe_x)(Sb_xW_{0.5}Te_{0.5-x})O_6$ para estudar o sistema $Sr_2Cu(W_{0.5}Te_{0.5})O_6$

O. Mustonen et al., Nature Communications - 9:1085 (2018)

8

Preparação das amostras

$Sr_2(Cu_{1-x}Fe_x)(Sb_xW_{0.5}Te_{0.5-x})O_6$

Nome	Percentual de Fe (%)	X	
AP	0	0	
AM0.5	0,5	0,005	
AM1	1	0,01	
AOX2	2	0,02	
AM2	2	0,02	
AM5	5	0,05	

AM - Fe metálico / AOX – óxido

Imagens dos compostos obtidas na internet

Caracterização estrutural – Difração de Raio X

Dados de refinamento: Sami Vasala

Medidas de Magnetização

Magnetização em função da temperatura (H=200 Oe)

12

Temperatura de Curie-Weiss (θ_{CW})

Temperatura de Curie-Weiss

Amostra	θ _{cw}		
AP	-99 K		
AM0.5	-72 K		
AM1	-100 K		
AM2	-95 K		
AOX2	-68 K		
AM5	-154 K		

 θ_{CW} negativa – interações predominantemente antiferromagnéticas para todas as amostras

Magnetização em função da temperatura (1 T)

Medidas de Magnetização

Espectroscopia Mössbauer

Velocidade (mm/s)

Espectroscopia Mössbauer

Tabela dos parâmetros hiperfinos das 5 amostras

PARÂMETROS	AM0.5	AM1	AOX2	AM2	A5
WID	0.64	0.62	0.64	0.58	0.59
ISO	0.43	0.43	0.45	0.42	0.42
QUA	1.08	1.09	1.06	1.09	1.08

- Fe ³⁺ em todas as amostras
- Sítio octaédrico de oxigênio

17

Annu. Rev. Earth Planet. Sci. vol 34:83-125 pages 46-125 (2006)

CONCLUSÕES

- Todas as amostras da série Sr₂(Cu_{1-x}Fe_x)(Sb_xW_{0.5}Te_{0.5-x})O₆ com fase única
- Átomos de Fe em sítio octaédrico com oxidação 3+
- Magnetização dos compostos com 0.5% e 1% de Fe semelhante ao composto com QSL
- Possível candidatos a apresentarem QSL : compostos com 0.5% e 1%
- Continuação do estudo destes dois compostos (Espectroscopia Mössbauer a LT, Medidas de calor específico e Susceptibilidade AC)