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Cost-Benefit Analysis and Distributional Weights: An Overview 

 

 

 

Introduction 

 Cost-benefit analysis (CBA) is notoriously insensitive to distributional concerns.  CBA 

quantifies well-being impacts by summing monetary equivalents: the amounts that individuals 

are willing to pay for policies they prefer, or to accept in return for policies they disprefer.  CBA 

will favor a policy with a positive sum of monetary equivalents, even if some are made worse off 

by the policy. Nor is CBA sensitive to the distribution of these valuations across the population. 

For example, if a pollution-reduction policy produces net benefits for higher income individuals 

(who are willing to pay a lot for a cleaner environment), and net costs for lower-income 

consumers or workers (who must pay higher product prices or receive lower wages as a result of 

the policy, and would prefer on balance not to make those expenditures in exchange for the 

pollution reduction), CBA will choose the policy as long as the (positive) sum of monetary 

equivalents of the higher-income group is larger in magnitude than the (negative) sum of 

monetary equivalents of the lower-income individuals.  

 The distributional insensitivity of CBA is sometimes mitigated, in practice, by 

monetizing various goods and bads using constant values that do not vary with individuals’ 

attributes—for example, population-average values.  The U.S. government employs a constant 

“value of statistical life” (VSL)—the conversion factor establishing individuals’ monetary 

equivalents for small changes in their fatality risks—rather than assigning a higher VSL to richer 

individuals, as textbook CBA would recommend.  (Viscusi 2010, p. 2) Textbook CBA, with 

heterogeneous VSL, would recommend citing hazardous sites in poorer rather than richer 

neighborhoods—even if those living near the sites are not compensated.  CBA with a constant 

VSL does not have this upshot.   However, the use of population-average or otherwise constant 

values lacks any theoretical basis.  Moreover, this practice can have unpleasant implications.  For 

example, if a population-average VSL is used to establish mandatory safety standards for some 

consumer product, poorer consumers may be forced to spend more money on risk reduction than 

they would prefer.  (Sunstein 2004). 

 Arguably, distributional considerations should be incorporated into CBA via so-called 

“distributional weights.”   Monetary equivalents would be adjusted by weighting factors 

reflecting individuals’ incomes (with lower-income individuals tending to get larger weights), or 

other welfare-relevant attributes such as health, life expectancy, or environmental quality.  
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 Distributional weighting actually has a substantial pedigree. This is hardly a new idea.   A 

scholarly literature dating from the 1950s endorses the use of weights, and analyzes how to 

specify them.  (Boadway and Bruce 1984, pp. 271-81; Brent 1984; Cowell and Gardiner 1999; 

Creedy 2006; Dasgupta and Pearce 1972; Dasgupta, Sen and Marglin 1972; Dreze 1998; Dreze 

and Stern 1987; Fleurbaey, Luchini, Muller, and Schokkaert 2013; Johansson-Stenman 2005; 

Liu, 2006;  Little and Mirrlees 1974; Meade 1955, ch. 2; Ray 1984; Squire and van der Tak 

1975; Weisbrod 1968; Yitzhaki 2003.)  

 Distributional weights were adopted, for a time, at the World Bank.  (Little and Mirrlees 

1994).  They are currently recommended by the official CBA guidance document for the U.K.  

(HM Treasury 2003, pp. 91-94).  Distributional weights, however, appear to have been rarely if 

ever used by CBA practitioners in the U.S. government, and the parallel U.S. guidance document 

does not discuss them. (Office of Management and Budget 2003). 

 This Article provides an accessible introduction to the topic of distributional weights.  In 

an age characterized by increasing income inequality, and increasing concern about inequality, it 

is important to consider how CBA—now the most widespread policy-evaluation tool—might be 

attuned to equity.  The fulcrum for my discussion will be the concept of the “social welfare 

function” (SWF).  The SWF is a foundational concept in much of welfare economics, providing 

the basis for optimal tax theory, growth theory, and the economic analysis of climate change.  

CBA with distributional weights, in turn, is a practicable method for implementing an SWF. 

In fact, to the extent that scholars favor distributional weights, they generally take the 

perspective adopted here: CBA with weights is seen as a proxy for an SWF.  This account of 

CBA is quite different from the well-known view which sees CBA as a tool for implementing the 

criterion of Kaldor-Hicks efficiency (potential Pareto-superiority).  The Kaldor-Hicks criterion 

has the advantage of avoiding interpersonal comparability, but has various flaws, described in a 

literature beginning with Scitovsky (1941; see Gorman 1955; Chipman and Moore 1978; Sen 

1979; Boadway and Bruce 1984).  The debate about the Kaldor-Hicks criterion is surely well 

known to readers of this journal, and will not be recapitulated  here.   Less familiar, perhaps, is 

the existence of an alternative defense of CBA: a defense that rejects Kaldor-Hicks efficiency, 

relies instead on the notion of an SWF, and sees weighted CBA as a methodology for 

operationalizing an SWF.  It is this view of CBA which is embodied in the scholarship on 

distributional weights that I have just mentioned, and which I will be setting forth here. 

 This Article is certainly not a comprehensive survey of this body of writing.  Rather, the 

aim is to present a clear and readable account of how distributional weights might be specified— 

showing that the specification of weights, although surely value-laden, can be given intellectual 

structure and rigor.  At the same time, the Article will address important questions that can be 

raised concerning the appropriateness of weights. 
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 I first describe the SWF concept, with a particular focus on two specific SWFs:  the 

utilitarian SWF, and an isoelastic/Atkinson SWF.  The Article then discusses the functional form 

of weights matching these two SWFs:  utilitarian weights and isoelastic weights.  Next, the 

Article provides a concrete example (involving risk-reduction policies and VSL) to show how 

distributional weights might be brought to bear on environmental policy choice and, perhaps, 

solve dilemmas with respect to the choice between differentiated and population-average 

valuations of goods. 

 The Article concludes by considering two clusters of objections to distributional weights.  

One concerns heterogeneous preferences.  SWFs (and thus distributional weights) require 

interpersonal comparisons of well-being; but how are such comparisons possible if individuals 

do not have the same preferences?   A different cluster concerns the tax system.  Aren’t 

distributional considerations best handled by the tax system, and not distributional weights?  

A third objection to weighting, not further discussed below, is that its implementation 

requires information about the incidence of costs and benefits across different population 

subgroups, and not merely population aggregate or average values.  In this era of “big data” and 

highly sophisticated computer models of the economy and of the physical environment, it is hard 

to see how the third objection has much force.
1
  Surely cost-benefit analysts otherwise persuaded 

of the appropriateness of weights could make some predictions (more or less detailed) about 

distributional incidence, and feed this information into the weighting scheme.  (On incidence 

analysis of environmental policy, see Fullerton 2009; Parry et al. 2006). 

 The concept of weights, and challenges to weighting, are generally discussed using a 

simple, one-period model.  This suffices to illustrate many key ideas and objections; but there are 

additional aspects to the topic of weighting that arise in an intertemporal context.  In particular, 

what is the connection between distributional weights and the discount rate?  The reader familiar 

with scholarship on climate change will note that distributional weights in the one-period case 

adjust for the marginal utility of consumption; and that the discount rate applied to the 

consumption of future generations, by climate change scholars, does the very same thing. (Stern 

2007, ch. 2A; Nordhaus 2008; Dasgupta 2008.)  In short, the discount rate functions as a kind of 

distributional weight.  Unfortunately, given space constraints, this observation cannot be further 

developed.  How to extend the model of distributional weights presented here to the 

intertemporal case is a topic that I must leave aside. 

                                                 
1
 In an influential critique of distributional weights, Harberger (1978) makes a related argument—namely, that 

distributional incidence depends upon demand and supply elasticities, and thus that optimal policies using weights 

may be counterintuitive (for example, an income tax schedule with regressive rates).   The proponent of weighting 

can easily “bite this bullet.”   Since Bentham, those working in the welfarist tradition have understood that their 

commitment is to a particular criterion for evaluating policies (for example, a utilitarian or isoelastic SWF), and not 

to particular policies.  Harberger, further, argues that distributional weights may lead to policies with large 

efficiency costs.  But efficiency costs are just costs in light of unweighted cost-benefit analysis—a methodology 

that, from the perspective of the SWF tradition, is problematic, since it does not correspond to any plausible SWF.  
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The analysis aims to be accessible.  Formally inclined readers should consult the 

Appendix, where various claims are stated more rigorously, or proved. 

 

Social Welfare Functions 

 The concept of the social welfare function originates with work by Abram Bergson and 

Paul Samuelson. (Bergson 1938, 1948, 1954; Samuelson, 1947). It was reenergized by Amartya 

Sen, in response to Arrow’s impossibility theorem (Sen 1970), and was the basis for James 

Mirrlees’ pathbreaking scholarship on optimal tax theory (see Tuomala 1990). It now permeates 

many subdisciplines within normative economics (although less so governmental practice).  See 

Adler (2012, pp. 79-88, summarizing scholarly development of the SWF concept). 

 The SWF framework has two key elements: an interpersonally comparable utility 

function, which transforms any given outcome (a possible consequence of policy choice) into a 

list or “vector” of utility numbers, one for each person in the population; and some rule for 

ranking these vectors.   

To illustrate, imagine that the model which the policymaker uses to think about her 

choices characterizes each individual in terms of his consumption (an individual’s expenditure 

on marketed goods and services), health, and leisure.   For simplicity, there are three people in 

the population (Jim, Sue, and Laura), and two outcomes being compared (x and y).  Jim has a 

particular bundle of consumption, health, and leisure attributes in x, and a different bundle in y.  

The same is true of Sue.  Laura, as it happens is unaffected by the choice between the outcomes; 

her attributes are the same in both. 

Our utility function assigns Jim’s bundles of attributes in x and y the utility values 10 and 

11, respectively; it assigns Sue’s bundles the values 30 and 25, respectively; and Laura’s two 

bundles are assigned the same utility value, 40.  Thus outcome x is mapped onto the utility vector 

(10, 30, 40), and y the vector (11, 25, 40), as shown in Table 1 immediately below. 

  Table 1: Outcomes as Utility Vectors    

   

  

 Outcomes      Outcomes 

 x y      x y 

Jim BJim
x
 BJim

y
     Jim 10 11  

Sue BSue
x
 BSue

y
     Sue 30 25 

Laura BLaura
x
 BLaura

y
     Laura 40 40 

 

Note: In the left table, BJim
x
 denotes the bundle of attributes (consumption, health, leisure) of individual Jim in 

outcome x, and so forth.   In the right table, the numbers are the utilities corresponding to these attribute bundles. 

Utility 

function u(.) 
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Let me postpone, for the moment, the question of where these utility numbers come from; 

and consider different possible rules for comparing utility vectors.  (See Adler 2012, ch. 5; 

Bossert and Weymark 2004).  One such rule is the leximin rule: it compares the utility levels of 

the worst-off individuals; if those are equal the second-worst-off; and so forth.  Leximin here 

prefers y, since Jim (the worst off) has utility 11 instead of 10. 

 A different rule is the utilitarian rule, which sums utilities.  Utilitarianism prefers x, since 

the sum of utilities is 80 rather than 76.   

 Although utilitarianism is sensitive to the distribution of consumption (given the 

declining marginal utility of consumption), it does not take account of the distribution of utility 

itself.  Imagine that Jim’s and Laura’s utilities remain as in Table 1, but that Sue’s utility level in 

x is any number U, however large; while her utility level in y is (U – 1 – ε), with ε an arbitrarily 

small positive number.  Utilitarianism still prefers x to y.    

 Leximin is sensitive to the distribution of utility.  Even though Sue’s loss from y is 

greater than Jim’s gain, leximin prefers y because Jim is worse off than Sue.  However, leximin 

is absolutist, in the sense that it is willing to incur arbitrarily large utility losses for better-off 

individuals in order to realize a utility gain (however small) for an individual who is worse-off 

and would remain so after the gain.  Imagine again that Jim’s and Laura’s utilities remain as in 

Table 1 and that Sue’s utility level in x is any number U, however large; but now imagine that 

Sue ends up at level 11 + ε in y, with ε an arbitrarily small positive number.  Thus Sue’s loss 

from y is the arbitrarily large U – 11 – ε, while Jim’s gain is only 1; and Sue ends up in y only ε 

better off than Jim.  Still, leximin prefers y to x.  

 The isoelastic/Atkinson
2
 SWF lies in between leximin and utilitarianism.  This SWF is 

parameterized by an inequality-aversion parameter γ and ranks utility vectors using the formula 

1 1 1

1 2

1
( ... )

(1 )
Nu u u  



    


 or the formula ln u1  + ln u2 + … + ln uN in the special case of γ 

=1.  The γ parameter can take any positive value.  If γ is zero rather than positive, this becomes 

utilitarianism.  As γ becomes larger and large, the isoelastic SWF gives more and more priority 

to utility changes affecting those at lower utility levels.   In the example in Table 1, if γ is less 

than or equal to approximately 1.6, the isoelastic SWF prefers outcome x to y.   Sue stands to 

lose more utility moving to y (5 units) than Jim stands to gain (1 unit); and with a low value of γ 

the isoelastic SWF assigns a greater social value to her loss than to Jim’s gain even though Jim is 

worse off than Sue in both outcomes.  With γ greater than 1.6, the isoelastic SWF now prefers y 

to x.  The priority given to utility changes affecting those who are worse off is now large enough 

                                                 
2
 Thus named because of its connection to the Atkinson inequality measure. 
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that moving Jim from 10 to 11 is seen as more socially valuable than avoiding Sue’s move from 

30 to 25. 

 This Article, as mentioned, will focus on the specification of distributional weights to 

approximate the utilitarian and isoelastic SWFs.  Both are quite popular in the SWF literature, 

and the reason for their popularity can be seen axiomatically.  They satisfy the Pareto principle: 

if at least one person’s utility increases, and no one else’s decreases, so does the value of the 

SWF.  These SWFs also satisfy an axiom of anonymity/impartiality: they are indifferent between 

any given utility vector and all permutations (rearrangements) of its component utility numbers.  

In other words, anonymous/impartial SWFs focus only on the pattern of well-being, and not on 

the identities of the people who end up at particular well-being levels. 

 Moreover, the utilitarian and isoelastic SWFs are separable—meaning that the ranking of 

outcomes is not influenced by the utility levels of unaffected people.  In the above example, 

Laura is unaffected.  She happens to be at level 40 in both outcomes; but note that the utilitarian 

SWF would prefer x to y in any case where Jim’s and Sue’s utilities are as in Table 1 and Laura 

has the same utility level in the two outcomes, regardless of what that level is. Similarly, the 

isoelastic SWF with γ less than or equal to 1.6 would prefer x to y regardless of Laura’s level, 

and the isoelastic SWF with γ greater than 1.6 would prefer y to x regardless of Laura’s level.  

Separability occurs with these SWFs because they use an additive formula.  Separability is both 

normatively defensible, and a huge practical advantage in policy analysis—enabling the analyst 

to focus her efforts on characterizing a policy’s impacts on those whose well-being would be 

changed by the policy (and not also to worry about how that change would affect their position 

relative to the potentially vast number of unaffected). 

 The leximin SWF is also Paretian, anonymous, and separable, and is also popular among 

some SWF theorists.  But it cannot be represented by a mathematical formula, which creates 

difficulties in mimicking this SWF with distributional weights.  Moreover, using an isoelastic 

SWF with larger and larger values of γ yields a ranking of utility vectors which is closer and 

closer to the leximin ranking. 

 All SWFs require some degree of interpersonal comparability of well-being, in the 

following sense.  If we start with a particular rule for ranking utility vectors (be it the utilitarian 

rule, the isoelastic rule, the leximin rule, or any other), and then transform the utility vectors 

associated with outcomes so that intrapersonal comparisons of utility levels, differences, and 

ratios are preserved but interpersonal comparisons are not, the ranking of outcomes may change 

as well.
3
   Given a particular such rule, we won’t have a stable ranking of outcomes absent some 

                                                 
3
 It should be noted that the isoelastic SWF with the special value γ = 1, i.e., the sum of the logarithm of utilities, is 

invariant to individual-specific ratio transformations of utility (given a fixed population size).  Such transformations 

do preserve a kind of interpersonal comparability, namely whether the individual is better or worse off than the 

common zero point.  See Bossert and Weymark 2004, pp. 1146-49.  The utilitarian SWF, and isoelastic SWFs with 

other values of γ, are not invariant to individual-specific ratio transformations of utility.  
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methodology for assigning utility numbers to individuals (as a function of their attributes in 

outcomes) that captures not only intrapersonal well-being information, but also interpersonal 

well-being levels, differences, and/or ratios.  (Bossert and Weymark 2004).
4
   

  More specifically, the utilitarian SWF requires interpersonal comparability of well-being 

differences.  Imagine that two outcomes are assigned utility numbers, so that each individual’s 

utility difference between the outcomes has a particular magnitude.  Imagine that these utility 

numbers are changed, so that the relative size of these differences, across individuals, is no 

longer the same.  Then the ranking of the outcomes by the utilitarian SWF may change as well.  

Consider Table 2 below, which shows possible renumberings of Jim and Sue’s utility.  In 

the first renumbering, we rescale Jim’s utility by a Jim-specific ratio transformation (multiplying 

each utility value assigned to Jim by a positive number aJim), and we rescale Sue’s by a Sue-

specific ratio transformation (multiplying each value assigned to Sue by a positive number aSue).     

In the second renumbering, we rescale Jim’s and Sue’s utility by a common linear transformation 

(multiplying all utilities by a single positive number a and adding a common b).   In the third 

renumbering, we rescale Jim’s and Sue’s utility by a common ratio transformation (multiplying 

all by a single positive number a).   

  Table 2: Interpersonal Comparisons and the Renumbering of Utility 

 Original  Renumbering 1 Renumbering 2 Renumbering 3 

 x       y        Diff. x        y        Diff. x      y          Diff.   x       y        Diff. 

Jim 10    11         1  200     220       20           2      12       10  30      33        3 

Sue      30    25       −5  60         50     −10 202   152     −50           90      75    −15 

 

Sum 40    36             260     270  204   164  120    108 

 

Note:    In the first renumbering, Jim’s utilities are each multiplied by a Jim-specific factor aJim equaling 20, while 

Sue’s are multiplied by a Sue-specific aSue equaling 2.    In the second renumbering, Jim’s and Sue’s utilities are 

subject to a common linear transformation au + b, with the common scaling factor a equaling 10 and the constant b 

equaling −98.  Finally, in the third renumbering, Jim’s and Sue’s utilities are subject to a common ratio 

transformation, each multiplied by the common positive number 3.    

The bold column labeled “Diff” shows the difference between each person’s utility in y and x.  Note that the relative 

size of these differences (Sue’s difference divided by Jim’s) is −5,  and that the second and third renumbering 

preserves this relative size while the first renumbering does not.  The last row displays the sum of utilities.   

                                                 
4
 A different possible understanding of the “social welfare function” employs a specific rule for ranking outcomes as 

a direct function of individual attributes, and then mirrors this ranking using a rule for ranking utility vectors that 

varies along with the assignment of individual utilities. (Fleurbaey, Luchini, Muller and Schokkaert 2013).  This 

approach is not considered here. 
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 With the original scheme of utility assignments, Sue’s utility difference between the 

outcomes is (−5) and Jim’s is 1.  The first renumbering changes the relative magnitude of these 

differences.  By contrast, the second and third renumberings do not change the relative 

magnitude of these differences.   And now observe that the first renumbering alters the utilitarian 

ranking of the outcomes, while the second and third renumberings do not.    

 The isoelastic SWF is more demanding in terms of interpersonal comparability than the 

utilitarian SWF.   While the utilitarian SWF requires interpersonal comparability of differences, 

the isoelastic SWF requires interpersonal comparability of levels, differences, and ratios.  Note 

that the second renumbering (rescaling utilities by a common linear transformation) changes 

well-being ratios.  (The ratio between Sue and Jim in x is originally 3 to 1, while with the second 

renumbering it becomes 101 to 1.  The ratios in y also change.)   Given a particular value of 

inequality aversion γ, the isoelastic SWF might prefer x to y using the original numbering but not 

the second renumbering.   However, the third renumbering (multiplying utilities by a common 

ratio transformation) preserves well-being ratios.  If the isoelastic SWF with a particular value of 

γ prefers one outcome over the other using the original numbering, than it does so with the third 

renumbering. 

 It should also be noted that the isoelastic SWF, unlike the utilitarian SWF, requires utility 

numbers to be positive.  For a further discussion, see Appendix.   

 We can now address two related questions.  First, what is the normative basis for a 

determination that one SWF is “better” than another, or more generally for a determination that 

the SWF framework for social decision is “better” than alternative frameworks?   Second, what 

is the basis for assigning utility numbers that are interpersonally comparable? 

 On the view taken here, the SWF is a template for ethical/moral preferences. (See 

Bergson 1948, 1954; Samuelson 1947, p. 221; Harsanyi 1977, ch. 4). The term “ethical” is more 

common among economists, “moral” among philosophers, but the two terms are for all intents 

and purposes synonyms—denoting a standpoint of impartiality, whereby the decisionmaker 

gives equal weight to everyone’s interests (or at least the interests of everyone within some 

population).  An SWF constitutes a systematic, coherent framework for structuring ethical/moral 

preferences:  a framework which a decisionmaker who has adopted the standpoint of impartiality 

might wish to use in refining and specifying her ethical/moral tastes.  

 Is there some deeper criterion of moral truth that establishes whether someone’s 

ethical/moral preferences are “correct” or “incorrect”?  That is a question of metaethics which is 

debated by philosophers, but is beyond the scope of welfare economics and, in any event, not 

relevant to the discussion here.  Whatever the nature of ultimate moral truth, a decisionmaker 

motivated by impartial concern will need to figure out what her ethical/moral preferences are.  

The SWF framework is a plausible format for regimenting those preferences: a format that 
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conforms to various axioms which seem (to those in the SWF tradition) morally very attractive, 

and which the decisionmaker may find attractive as well.  

 While the SWF framework itself is a tool for specifying and refining the ethical/moral 

preferences of some decisionmaker, the inputs for the framework are utility numbers measuring 

the well-being of everyone within some population (relative to which the decisionmaker has 

adopted an attitude of impartiality).  Very plausibly, there is a close connection between 

someone’s welfare and that individual’s personal, i.e., self-interested, preferences.  Phillip is 

better off in outcome x than y if, and only if, Phillip has a personal preference for x.  (Adler 2012, 

ch. 3;  Fleurbaey, Luchini, Muller, and Schokkaert, 2013). 

 Moreover, if members of the population have identical personal preferences, then 

interpersonal comparisons become straightforward.  Joe with one bundle of attributes is better off 

than Raj with another if everyone (given their common personal preferences) prefers Joe’s 

bundle to Raj’s.   Similarly, interpersonal comparisons of well-being differences and ratios 

become straightforward given homogeneous personal preferences.  My analysis of distributional 

weights will start with this simplifying assumption of identical personal preferences—

postponing, until later in the Article, the crucial (but contested) question of how the SWF 

framework should handle heterogeneity of personal preferences.   

 To reiterate: the SWF approach offers a systematic and coherent framework for 

regimenting the ethical/moral preferences of some decisionmaker, e.g., an elected official with 

power to set policy direction.  And the utility numbers in the SWF represent the personal (self-

interested) preferences of the affected population—which, in the simplest case, are identical.  

Although it would be an exaggeration to say that this way of viewing the SWF framework is the 

only perspective taken in the academic literature, it certainly has substantial support therein.  In 

turn, this perspective will be very useful in seeing how to specify distributional weights, and in 

understanding the debate about weights.
5
 

  

                                                 
5
 This perspective also sheds light on the use of empirical data to calibrate an SWF and, in particular, to specify 

distributional weights. Because the decisionmaker has moral preferences that make reference to the personal 

preferences of individuals affected by her (the decisionmaker’s) choices—because the SWF takes utilities measuring 

the population’s personal preferences as its inputs—it seems perfectly sensible for the decisionmaker to engage in 

empirical research to help determine the structure of those personal preferences.  (For example, she might engage in 

empirical research to ascertain the λ parameter for the CRRA utility function; see below.)   

 By contrast, empirical research to determine the functional form of the SWF itself—for example, to specify 

the γ parameter for the isoelastic SWF—is more puzzling. (On such research, see Lambert, Millimet, and Slottje 

2003).  How does such research help the decisionmaker determine what her own moral preferences are?  

(Admittedly, an elected decisionmaker might have a strategic interest in having moral preferences that do not 

deviate too far from the median voter’s.) 
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Utilitarian Distributional Weights 

 A simple one-period model will illustrate the workings of CBA and the specification of 

utilitarian distributional weights.  In any given outcome, each individual faces a particular set of 

market prices, and is able to expend a certain amount (her consumption) on marketed goods and 

services.  She also has non-consumption attributes, such as health, leisure or environmental 

quality.   (In general, an individual’s income need not equal her consumption; but in a one-period 

model without inheritance or bequests they are identical, and so the reader in this discussion can 

substitute “income” for “consumption” if she likes.) 

 Each policy choice, including the status quo choice of inaction, leads for sure to some 

outcome.   Let p
s
 denote the prices in the status quo and p

x
 the prices in outcome x. ci

s 
denotes 

the total consumption of individual i in the status quo, and similarly ci
x
 denotes her total 

consumption in a given outcome x. Finally, ai
s
 and ai

x
 denote the non-consumption attributes of 

individual i in, respectively, the status quo and outcome x.  We can use the compact notation Bi
x
 

or Bi
s
 to denote someone’s overall bundle in a given outcome, i.e., Bi

x
 = (ci

x
, p

x
, ai

x
).  There are N 

individuals total in the population.
6
 

 Unweighted CBA sums monetary equivalents.  These can be defined as “equivalent 

variations” (changes to status quo consumption) or “compensating variations.”  (Freeman 2003, 

ch. 3).  Individual i’s equivalent variation for outcome x is the amount ∆ci
x
 such that she is 

indifferent between the bundle (ci
s
 + ∆ci

x
, p

s
, ai

s
) and the bundle (ci

x
, p

x
, ai

x
).  Individual i’s 

compensating variation for outcome x is the amount CVi
x
 such that she is indifferent between the 

bundle (ci
s
, p

s
, ai

s
) and the bundle (ci

x
 –CVi

x
, p

x
, ai

x
).   

 Equivalent variations are theoretically preferable to compensating variations.  CBA with 

compensating variations can violate the Pareto principle, while CBA with equivalent variations 

cannot. (See Appendix.)  My presentation will henceforth focus on the equivalent variation—

now using the term “monetary equivalent” to mean specifically that.  In practice, CBA analysts 

often employ compensating variations, which can be seen as a rough-and-ready proxy for the 

equivalent variation. 

 Consider now the utilitarian SWF.  Recall that—in order to arrive at interpersonally 

comparable utilities—we are starting with the simplified (and concededly quite unrealistic) 

assumption of common personal preferences.  Moreover, utilitarianism requires a cardinal 

interpersonally comparable utility function—a function that embodies information about utility 

differences.  

 Given common personal preferences, expected utility theory provides a straightforward 

path to cardinal and interpersonally comparable utilities. This theory shows that if someone has a 

                                                 
6
 How to specify the SWF approach, and CBA with distributional weights, to take account of variable population 

size is an important topic—but one that cannot be addressed here given space constraints. 
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well-behaved ranking of lotteries over attribute bundles, there will exist a so-called von-

Neumann/Morgenstern (vNM) utility function u(.) such that the mathematical expectation of u(.) 

will correspond to this ranking.  Moreover, another function v(.) will be such that its 

mathematical expectation also corresponds to the ranking of lotteries if and only there is a 

positive number a and a number b such that v(B) = au(B) + b for any bundle B.  (Kreps, 1988). 

 Assume that individuals have common personal preferences (including lottery 

preferences), and that these are represented by function u(.).  Let Bi
x
 be individual i’s bundle of 

attributes in outcome x, and Bi
y
 her bundle in outcome y.   Using function u(.), the utilitarian 

SWF compares x and y by comparing the sum u(B1
x
) + u(B2

x
) + … + u(BN

x
) to the sum u(B1

y
) + 

u(B2
y
) + … + u(BN

y
).   Now, consider any function v(.) that equally well represents the common 

lottery preferences.  Using function v(.), the utilitarian SWF compares x and y by comparing the 

sum v(B1
x
) + v(B2

x
)  + … + v(BN

x
) to the sum v(B1

y
) + v(B2

y
)  + … + v(BN

y
).  But because v(.
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individual’s consumption (total monetary expenditure).  But equal money changes do not 

necessarily correspond to equal changes in interpersonally comparable utility.  Adding $100,000 

to Bill Gates’ consumption makes a much smaller difference to his utility than adding $100,000 

to the expenditures of someone with an ordinary income.  A small money change, for a given 

individual, can be translated into a utility change by using the individual’s marginal utility of 

money as an adjustment factor. 

 How do we calculate MUi?  Function u(.) captures individuals’ (common) personal 

preferences over lotteries, where the “prizes” are bundles consisting of consumption amounts, 

market prices, and non-consumption attributes.  Even if individual do have common personal 

preferences, estimating their ranking of such lotteries seems very complex. 

 However, recall that we are trying to estimate individuals’ marginal utilities in the status 

quo—where individuals have various consumption and non-consumption attributes, but face a 

single price vector.  We can therefore ignore the full content of u(.), and focus on estimating the 

u(.) values of consumption-nonconsumption bundles given that prices p are at the value p
s
.    

 There are many different empirical methods for estimating these u(.) values. (See, e.g., 

Keeney and Raiffa 1993; Evans and Viscusi 1991; Rey and Rochet 2004; Finkelstein, Luttmer 

and Notowidigdo 2008).  Given space limitations, I can only briefly describe one such approach, 

as follows.   Imagine that we know how individuals rank lotteries over consumption amounts, 

given that non-market attributes are fixed at various levels (a, a*, a**, …).  Each such ranking is 

captured by a “conditional” utility function h
a
(.), h

a*
(.), h

a**
(.), …, which takes consumption 

alone as its argument.  A given h
a
(.) will be concave in consumption if individuals are risk-

averse over consumption lotteries holding fixed non-market attributes at the designated level a; 

convex in consumption if individuals are risk-seeking; and linear if individuals are risk-neutral.  

 Assume that we have estimated this conditional utility function for various background 

levels of non-market attributes a, a*, a** … . Assume, moreover, that we have ordinary (non-

lottery) willingness-to-pay/willingness-to-accept data, indicating the change in consumption that 

suffices to compensate individuals, at various consumption levels, for a change in non-market 

attributes from a to a*, a* to a**, etc.  Putting both sorts of data together, we are in a position to 

estimate u(.), i.e., utility as a function of both consumption and non-market attributes, and thus 

the weighting factor MUi. 

 Why is the approach just sketched a useful way (although not the only way) to think 

about the estimation of MUi?  First, it is cognitively less challenging for individuals to reflect 

about their preferences for lotteries over consumption holding fixed other attributes , as opposed 

to lotteries with all attributes varying.  Second (and relatedly) there is a vast econometric 

literature that tries to estimate utility as a function of income (or wealth or consumption) alone.  

(See Adler 2012, pp. 291-94, providing references.)  Implicitly if not explicitly, what this 

literature is doing is inferring preferences for consumption (or income or wealth) gambles, 
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holding fixed other attributes.  Finally, willingness-to-pay/accept data for non-market goods is 

also plentiful—indeed, inferring such amounts is essential for ordinary CBA even without 

weights, and is therefore a key research question in applied economics.  

  Note that the conditional function, h
a
(.), is indexed to the level of non-market attributes.  

This allows for the possibility that the degree to which individuals are risk-averse or -seeking 

with respect to the consumption gambles depends upon a.  But two useful simplifications can 

now be introduced.  First, we might assume that preferences over consumption gambles are 

invariant to the level of non-market attributes.  If so, there is a single conditional function h(.), 

and it can be shown that MUi(.) is just equal to hʹ (ci
s
) × m(ai

s
), with hʹ (.) the first derivative of 

h(.) and m(.) a multiplicative scaling factor that scales up or down this marginal h(.) value to take 

account of non-market attributes.  

 A second simplification is to assume that preferences over consumption gambles, holding 

fixed non-market attributes, take the constant-relative-risk-aversion (CRRA) form:  

11
( )

1
h c c 






or ln c with λ =1.  (Gollier 2001, ch. 2).  The CRRA form is extremely popular 

in the literature on preferences for consumption (or income or wealth) gambles.  It allows us to 

capture the degree of risk-aversion (or proneness) with respect to consumption in a single 

parameter λ.
8
  Indeed, much of the existing work on distributional weights incorporates the 

CRRA form.  For estimates of λ, see Kaplow (2005).  

 There is a mathematical isomorphism between the formula for CRRA utility (as a 

function of consumption), and the formula for the isoelastic SWF (as a function of individuals’ 

utilities).   However, the risk-aversion parameter λ of the CRRA utility function and the 

inequality-aversion parameter γ of the isoelastic SWF are conceptually quite different.  λ is a 

number that captures individuals’ personal preferences over consumption gambles.  It is useful 

in estimating distributional weights both for the utilitarian SWF (which has no γ parameter) and 

for the isoelastic SWF (which does).  By contrast, the inequality-aversion parameter γ captures 

the moral preferences of a certain kind of social planner (namely, one who has moral preferences 

representable via an SWF, and more specifically has a moral preference for equalizing well-

being rather than simply aggregating utilities in utilitarian fashion). 

 The following table summarizes the three formulas for CBA with distributional weights 

to mimic a utilitarian SWF: the general case, and with the simplification, first, of a preferences 

for consumption lotteries that are invariant to background attributes; and, second, of invariance 

coupled with CRRA. 

                                                 
8
 The constant-absolute-risk-aversion (CARA) utility function also takes a simple (exponential) form, but it is 

widely seen to be implausible that absolute risk aversion would remain constant rather than decrease (Gollier 2001, 

ch. 2); and CARA utility is used much less often in work on distributional weights than CRRA utility. 

. 
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    Table 3: CBA with Utilitarian Distributional Weights  

General Case 
A given outcome x is assigned 

the sum of MUi × ∆ci
x
, 

summing across all 

individuals.  MUi, the 

marginal utility of 

consumption for individual i 

in the status quo, is some 

function of her status quo 

consumption and 

nonconsumption attributes.  

MUi = f(ci
s
, ai

s
) 

 

 

Invariance  

Individuals’ rankings of 

consumption lotteries, holding 

fixed background attributes, 

are invariant to the level of 

such attributes. 

 

The formula for the general 

case simplifies so that MUi = 

hʹ (ci
s
) × m(ai

s
), with h(.) a 

utility function representing 

the ranking of consumption 

lotteries, and hʹ (.) the first 

derivative 

Invariance plus CRRA 

CRRA means that h(.) takes 

the form:  11
( )

1
h c c 






 .  

Parameter λ represents the 

degree of risk aversion.  

 

The formula for the general 

case simplifies so that MUi = 

(ci
s
)
−λ

 × m(ai
s
) 

 

Note: These are formulas for distributional weighting under conditions of certainty, with each policy choice leading 

for sure to one outcome.  For corresponding formulas under uncertainty, see Appendix. 

 

 Note that, in all three cases, the weighting factor MUi for individual i depends on both 

her status consumption ci
s
, and her status quo non-consumption attributes.    Much work on 

distributional weights is yet more simplified—ignoring non-consumption attributes, and making 

someone’s weighting factor just a function of his consumption (or income or wealth).   (See, e.g., 

HM Treasury 2003.) 

 Distributional weights of this consumption-only form can be theoretically supported only 

in two special cases:  (1) those affected by the policy are heterogeneous with respect to status 

quo consumption, but relatively homogeneous with respect to status quo non-consumption 

attributes; or (2) the utility function u(.) not only satisfies the invariance requirement, but takes a 

special additively separable form—which has the upshot that the multiplicative scaling factor 

m(.) will be unity for all non-consumption attributes.   Even if neither of these theoretical 

justifications for consumption-only weights is applicable, data limitations may perhaps justify 

this approach: good information regarding the correlation of consumption and non-consumption 

attributes among the affected population may not be available (within her informational budget) 

to the decisionmaker. 

 The model presented here has assumed that each policy choice, for certain, leads to a 

particular outcome.  More realistically, each policy choice is a probability distribution over 

outcomes (with these probabilities capturing the decisionmaker’s uncertainty about which 

outcome will result), and the status quo itself is a probability distribution over outcomes.   In this 

case, CBA defines an individual’s equivalent variation for a policy P (denote this as ∆ci
P
) as the 
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change to her consumption in all status quo outcomes that makes her indifferent between the 

status quo and the policy.  

 The utilitarian SWF, in turn, can now be approximated by a formula that smoothly 

generalizes that given above:  the sum of EMUi × ∆ci
P
 , where EMUi is individual i’s expected 

marginal utility of consumption, given the probability distribution over consumption and other 

attributes that she faces in the status quo. 

 The use of weighted CBA to mimic a utilitarian SWF also generalizes to the case of 

“inframarginal”  changes, where policies are no longer “small” variations  from the status quo.  

The formula for assigning weights becomes more complicated.  An individual’s weight, now, is 

policy-specific.  It depends not only on her status quo attributes, but also the magnitude of the 

equivalent variation corresponding to a particular policy. 

  

Isoelastic Distributional Weights 

 Let us continue using the simple one-period model of choice under certainty introduced 

in the previous section.   However, we now assume that the decisionmaker’s ethical/moral 

preferences take the form of an isoelastic SWF.  For short, these are “isoelastic” moral 

preferences.  

 The isoelastic SWF’s ranking of policies that are “small” deviations from the status 

quo—like the utilitarian ranking—can be approximated by the sum of individual monetary 

equivalents, each multiplied by a weighting factor that is just of a function of the individual’s 

status quo attributes.   What is the functional form of these isoelastic distributional weights?  

Recall that isoelastic moral preferences give greater priority to well-being changes affecting 

worse-off individuals.  Recall, too, that the degree of such priority is embodied in an inequality-

aversion parameter γ, which can take any positive value.  These features of the isoelastic SWF 

are reflected in the corresponding distributional weights.   Individual i’s isoelastic distributional 

weight is her utilitarian distributional weight, MUi — her marginal utility of income, given her 

status quo attributes — multiplied by an additional term, MMVUi.    

 MMVUi is the marginal moral value of utility for individual i.   With u(.) the utility 

function representing individuals’ common personal preferences, and (ci
s
, ai

s
) individual i’s 

bundle of consumption and non-consumption attributes in the status quo, MMVUi is equal to 

u(ci
s
, ai

s
)
−γ

.   MMVUi measures the moral benefit produced by a small increase in individual i’s 

level of utility—the extent to which a small increase in individual i’s level of utility in a given 

outcome (here, the status quo outcome) improves the position of that outcome in the isoelastic 

moral ranking of outcomes.   Note that MMVUi is a decreasing function of utility level, given 

that γ is positive:  If the utility level of individual i is larger than that of individual j, MMVUi is 

less than MMVUj.   This reflects the priority that the isoelastic SWF gives to worse-off 
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individuals.  A small increment to individual j’s utility yields a larger moral benefit than the very 

same increase in individual i’s utility.    

 MMVUi is not merely decreasing with utility level, but its specific magnitude depends 

upon the value of γ.   In determining a specific such value, the decisionmaker makes an 

ethical/moral choice.  Having decided to endorse the isoelastic SWF (rather than the utilitarian 

SWF or some other functional form), she now makes the further decision to endorse a particular 

degree of moral priority for the worse off.  

 There are various thought experiments that the decisionmaker might undertake in 

thinking through this latter choice.  (Adler 2012, pp. 392-99).  One such thought experiment is a 

“leaky bucket” experiment. The decisionmaker asks herself: if High is at K times the level of 

well-being of Low, and we reduce High’s utility by a small amount ∆u, and at the same time 

increase Low’s by some fraction of ∆u, what is the minimum such fraction such that the 

combination of the loss to High and gain to Low is on balance a moral benefit?  Another such 

thought experiment is an “equalization” experiment.  If High is at K times the level of well-being 

of Low, and we equalize their well-being levels at some level less than halfway between the 

starting points, what is the smallest such level such that the combination of the loss to High and 

gain to Low is a moral benefit? The answer to either type of question fixes a value for γ.   

 Table 4 provides formulas for CBA with both utilitarian and isoelastic distributional 

weights. It covers the general case; the special case in which personal preferences over 

consumption lotteries are invariant to the level of non-income attributes; and the extra 

simplification that comes from coupling this invariance assumption with a CRRA function for 

the utility of consumption. 

  Table 4: CBA with Utilitarian and Isoelastic Distributional Weights 

 General Case Invariance Invariance plus CRRA 

Utilitarian 

Weights 

Sum of MUi × ∆ci
x
 

 

MUi = f(ci
s
, ai

s
) 

 

Sum of MUi × ∆ci
x
 

 

MUi = hʹ (ci
s
) × m(ai

s
) 

Sum of MUi × ∆ci
x 

 

MUi = (ci
s
)
−λ

 × m(ai
s
) 

Isoelastic 

Weights 
 

γ > 0 is  

coefficient 

of 

inequality 

aversion  

Sum of MMVUi × MUi × ∆ci
x
 

 

MUi = f(ci
s
, ai

s
) 

 

MMVUi = u(ci
s
, ai

s
)
−γ 

 

Sum of MMVUi × MUi × ∆ci
x
 

 

MUi = hʹ (ci
s
) × m(ai

s
) 

 

MMVUi = u(ci
s
, ai

s
)
−γ

, with   

u(ci
s
, ai

s
) = h(ci

s
) × m(ai

s
) + k(ai

s
) 

 

 

Sum of MMVUi × MUi × ∆ci
x
 

 

MUi = (ci
s
)
−λ

 × m(ai
s
) 

 

MMVUi = u(ci
s
, ai

s
)
−γ

, with   

u(ci
s
, ai

s
) = h(ci

s
) × m(ai

s
) + k(ai

s
) 

and h(c) = (1−λ)
−1

 c
1−λ

   

 

Note: These are formulas for distributional weighting under conditions of certainty, with each policy choice leading 

for sure to one outcome.  For corresponding formulas under uncertainty, see Appendix. 
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 Apart from the use of the extra MMVUIi term, there are three additional respects in 

which isoelastic weighting differs from utilitarian weighting.  First, as mentioned earlier, the 

isoelastic SWF requires interpersonal comparability of utility ratios.  Even on the assumption of 

common personal preferences, a vNM utility function representing such preferences is only 

unique up to a linear transformation, and thus is adequate for utilitarian weights but not isoelastic 

weights.  To understand this point, consider Table 5 immediately below.  Individuals are 

identical except for their consumption amounts. One CRRA function assigns utility numbers to 

these amounts.  A second function is a linear transformation of the first: two times the first plus a 

non-zero constant.  These two functions are equally good vNM representations of a possible 

preference structure with respect to consumption gambles: they imply the very same ranking of 

such gambles.  Moreover, as shown in the table, the two functions imply equivalent utilitarian 

distributional weights, but not equivalent isoelastic weights.  (On the importance of ratio-scale 

measurability for the isoelastic SWF, with reference to environmental policy, see Johansson-

Stenman 2000). 

 Table 5: Isoelastic Weights are Affected by Rescalings of the Utility Function  

  that do not Preserve Utility Ratios   

 

 

Consumption 

(ci) 

Utilitarian 

weight with 

utility u = ln c.   

 

MUi = 1/ci 

Utilitarian weight 

with utility u* = 

2×ln c + 3.    

 

MUi = 2/ci 

Isoelastic weight, γ =2, 

with utility u = ln c   

 

MUi = 1/ci  

MMVUi = (ln ci)
−2

  

Isoelastic weight, γ =2, with 

utility u* = 2×ln c + 3 

 

MUi = 2/ci 

MMVUi  = (2×ln ci + 3)
−2 

$20,000 1/20000 2/20000 (1/20000)× 9.90
−2 

(2/20000)×22.81
−2 

$40,000 1/40000 2/40000 (1/40000)×10.60
−2 

(2/40000)×24.19
−2 

$60,000 1/60000 2/60000 (1/60000)×11.00
−2 

(2/60000)×25.00
−2 

$80,000 1/80000 2/80000 (1/80000)×11.29
−2 

(2/80000)×25.58
−2 

$100,000 1/100000 2/100000 (1/100000)×11.51
−2 

(2/100000)×26.03
−2 

  

Note:  Let u(c, a) = ln c × m(a).   Let u*(.) = 2u(.) + 3. Assume that all individuals have identical nonconsumption 

status quo attributes a
s
 with m(a

s
) = 1.  While the utilitarian weights according to u*(.) are not numerically identical 

to the utilitarian weights according to u(.), it can be seen that they are scaled up from the u(.) weights by a factor of 

2, and are thus “equivalent” in the sense of producing an identical ranking of outcomes when incorporated into 

weighted CBA.  By contrast, isoelastic weights according to u*(.) are not scaled up from u(.) by any constant factor.     

 

 Given common personal preferences, a utility function unique up to a ratio 

transformation (and thus sufficient to determine isoelastic weights) can be produced by taking 

the vNM function and then assigning the number zero to a “threshold bundle”: a bundle of 

attributes which individuals regard as being just at the threshold of a life worth living (e.g., a 

bundle with very low consumption and bad health). This kind of “zeroing out” is familiar from 
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scholarship on QALYs (quality adjusted life-years), a technique for measuring health states on a 

zero-one scale that sets zero as a health state no better than death.  

 A second additional difference from utilitarian weights concerns policy choice under 

uncertainty.  (Adler 2012, ch. 7; Fleurbaey 2010). It turns out that there are two ways to apply an 

isoelastic SWF to a set of policies, each of which is a probability distribution over outcomes: the 

“ex ante” approach and the “ex post” approach. The ex ante approach is readily operationalized 

by taking monetary equivalents under uncertainty, and by setting the weighting factor equal to 

the EMUi term multiplied by a MMVEUi term (“marginal moral value of expected utility”) 

analogous to the MMVUIi term in the certainty case.  The ex post approach is much more 

complicated to mimic with distributional weights. If one favors an isoelastic SWF applied under 

uncertainty in an ex post manner, there is a strong case that the computational complexity of 

mimicking this approach via weighted CBA (as opposed to direct implementation of the SWF) is 

too great to be justified. See Appendix for details. 

 Finally, the utilitarian SWF yields consumption-only weights, even with population 

heterogeneity in non-consumption attributes, if the utility function u(.) takes a special additively 

separable form.  That is not true for the isoelastic SWF.  See Appendix. 

 

An Illustrative Example: VSL and Weights 

 This section uses the value of statistical life (VSL) to illustrate distributional weighing.  

VSL is the marginal rate of substitution between survival probability and income.  This is the 

concept used by CBA to monetize the fatality-risk-reduction benefits of environmental and other 

policies.  VSL has become hugely important in the practice of CBA by U.S. governmental 

agencies, especially the Environmental Protection Agency.   (Cropper, Hammitt and Robinson 

2011). 

 I use the workhouse, one-period model of VSL that is standard in the literature. 

(Eeckhoudt and Hammitt 2004).   Each individual in the status quo earns some income, and has 

some probability of surviving through the end of the current period (e.g., the current year) and 

consuming her income; if she doesn’t survive, the income is bequested.  Policies change 

individuals’ survival probabilities or incomes.  In other words, each individual in any given 

outcome has an attribute bundle consisting of an income amount plus a single binary non-income 

attribute: surviving the current period, or dying.  The status quo and policies are lotteries over 

such outcomes. Each individual has personal preferences over (income, die/survive) bundles, 

represented by a vNM utility function. Her VSL in the status quo reflects her status quo income 

and survival probability, plus these preferences.   

 In order to enable the calculation of distributional weights, I assume that individuals have 

common personal preferences over (income, die/survive) bundles, represented by a common 
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vNM function.  I also assume that marginal utility in the death state is zero: the utility of income 

conditional on the attribute “die” is a flat line.  Since utility here is supposed to represent 

personal benefit, this assumption seems very compelling.
9
  It also means that we can calibrate 

the common vNM function by knowing the “subsistence” level of income: the level which, if 

combined with the attribute “survive,” is so low that individuals are indifferent between that 

bundle and dying.   I add the simplifying assumption that individuals’ preferences over lotteries 

in the “survive” state are CRRA.  Note finally that, by determining the subsistence level of 

income, we have at the very same time identified a natural zero point for purposes of the 

isoelastic SWF.    

 Given an individual’s status quo income and survival probability, we can now assign her 

(1) a VSL value; (2) a utilitarian weight, equaling her expected marginal utility of income 

(EMUi) and (3) an isoelastic weight, equaling EMUi multiplied by the marginal moral value of 

expected utility (MMVEUi), with MMVEUi in turn a function of the coefficient of inequality 

aversion γ that the policymaker chooses.  For small changes in income and survival probability, 

an individual’s monetary equivalent (equivalent variation) is approximately the income change 

plus her VSL multiplied by the change in survival probability.   (For example, if an individual 

has a VSL of $3 million, her equivalent variation for a 1-in-1 million reduction in her fatality risk 

is approximately $3, and it is approximately $30 for a 1-in-100,000 reduction.)  The utilitarian 

ranking of policies is, in turn, approximated by the sum of monetary equivalents multiplied by 

the utilitarian weights; and the ex ante isoelastic ranking by the sum of monetary equivalents 

multiplied by the isoelastic weights.   

  Assume that we are considering policies which will affect two populations: a better-off 

group with a higher income and lower status quo fatality risk, and a worse-off group with a lower 

income and higher status quo risk.  Specifically, let each member of the first group have an 

annual income of $100,000 and face an annual all-cause fatality risk of 0.005; while each 

member of the second group has an annual income of $20,000 and faces an annual all-cause 

fatality risk of 0.01.  (The average annual all-cause fatality risk for the entire U.S. population is 

in between these values, at around 0.008.). The policies will reduce fatality risks by 1 in 100,000.    

 Table 6 calculates VSL values for the better and worse-off individuals (for short, “Rich” 

and “Poor”), as well as the ratios of these values, the ratios of the Poor and Rich distributional 

weights, and the ratios of their isoelastic weights—given different assumptions about the 

coefficient of relative risk aversion λ, the subsistence level, and the degree of inequality aversion 

γ.   Note that, especially at higher values of λ, the Rich VSL is many multiples of the Poor VSL.   

Such high multiples are inconsistent with observed values of the income elasticity of VSL—

perhaps reflecting the limitations of the simple analytic model of VSL used here.  (A model 

incorporating labor or health attributes might have less heterogeneity in VSL values.) 

                                                 
9
 I may have moral or altruistic reasons to care about the amount of income left to my heirs, or the state, but their 

consumption after my death does not change my well-being. 
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Alternatively, low observed income elasticities of VSL may reflect real-world violations of the 

axioms of expected utility.  (On income elasticity of VSL, see Evans and Smith 2010; Kaplow 

2005; Viscusi 2010).  

   Table 6: Distributional Weights and VSL 

    

  λ  = 0.5 

Sub=1000 
 λ  = 0.5 

Sub=5000 
λ  =1 

Sub=1000 
  λ = 1 

Sub=5000 
λ  = 2 

Sub=1000 
λ  = 2 

Sub =5000 
λ  = 3 

Sub=1000 
λ = 3 

Sub =5000 
 VSLRich $180,905 $156,059 $462,831 $301,079 $9,949,749 $1,909,548 $502 mill $20,050,251 

VSLPoor $31,369 $20,202 $60,520 $28,006 $383,838 $60,606 $4,030,303 $151,515 

VSLRich/VSLPoor 5.8 7.7 7.6 10.8 25.9 31.5 124.7 132.3 

U-WeightPoor/ 

U-WeightRich 

2.2 2.2 5 5 24.9 24.9 124.4 124.4 

Iso-WeightPoor/  

Iso-WeightRich 

γ = 0.5 

3.6 4.2 6.2 7.3 25.5 28.1 124.8 128.6 

Iso-WeightPoor/ 

Iso=WeightRich 

γ = 1 

5.8 7.8 7.7 10.8 26.1 31.7 125.3 133 

Iso-WeightPoor/ 

Iso=WeightRich 

γ = 2 

15.1 27.1 11.9 23.5 27.3 40.3 126.2 142.2 

 

Note:  “U-Weight” indicates the utilitarian distributional weight for Rich or Poor (depending on the subscript), and 

“Iso-Weight” the isoelastic weight.  Rich individuals have an annual income of $100,000 and fatality risk of 0.005, 

while Poor individuals have an annual income of $20,000 and fatality risk of 0.01.  Each column corresponds to 

different assumptions about the coefficient of risk aversion λ for CRRA utility, and the subsistence level of income. 

 

  In any event, what bears especial note about Table 6 is how weights counteract the 

higher VSL values of Rich individuals.  For example, at λ = 2 and a subsistence level of 1000, 

the Rich VSL is 25.9 times that of the Poor; but the Poor utilitarian weight is 24.9 times that of 

the Rich.
10

 Thus, while traditional CBA would assign Rich a monetary equivalent for a given 

small risk reduction (here, a 1 in 100,000 reduction) which is 25.9 times larger than Poor’s 

monetary equivalent for the same risk reduction, utilitarian weighted CBA would assign Rich an 

adjusted monetary equivalent which is 25.9/24.9 = 1.04 times larger than Poor’s.   

 Adding isoelastic weights further counteracts the Rich/Poor VSL divergence.  Continuing 

with the scenario of λ = 2 and a subsistence level of 1000, note that at a low value (0.5) of 

                                                 
10

 A subsistence level of $1000 may seem incredibly low, but in fact is in the range of the “extreme poverty” level of  

$1.25/day now used by the World Bank and the U.N.   On the derivation of this level, see Chen and Ravallion 2010.  

Empirical evidence on λ is mixed; a value of 2 or even substantially higher is not empirically implausible.  See 

Kaplow 2005.   
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inequality aversion γ, the Poor/Rich ratio of isoelastic weights is 25.5.  Rich’s adjusted monetary 

equivalent is now even closer to Poor’s (the ratio is 25.9/25.5 = 1.02).  At larger values of γ, 

isoelastic weights “overcompensate” for the difference between Rich and Poor VSL: the 

Poor/Rich ratio of isoelastic weights exceeds the Rich/Poor VSL ratio.  

 The table also illustrates subtle interactions between λ and γ, which cannot be explored in 

detail here—except to note that as λ increases and utilitarian weights for the Poor relative to the 

Rich become larger, the further proportional increase produced by introducing and then 

increasing inequality aversion is less significant.  

 The utilitarian and isoelastic weights would also, of course, affect the relative weighting 

of income reductions incurred by Rich or Poor.  If someone’s income is reduced by amount ∆c, 

traditional CBA assigns the same value (∆c) to that reduction, regardless of the individual’s 

attributes.    Weighted CBA assigns the reduction a value equaling ∆c multiplied by the 

distributional weight.  Thus the ratio between the weighted value of a reduction in Poor’s 

income, and the weighted value of the very same reduction in Rich’s income, is simply the ratio 

of distributional weights—as displayed in the fourth row of the table for the utilitarian case, and 

in subsequent rows for isoelastic weights. 

 Let us now consider four types of policies, assuming that each group has the same 

number of members: (I) Uniform Risk Reduction and Cost Incidence (both Rich and Poor 

individuals receive a 1-in-100,000 fatality risk reduction, and incur some reduction in income, 

the same for both groups): (II) Uniform Risk Reduction and Redistributive Incidence (both Rich 

and Poor individuals receive the risk reduction, but all the costs are borne by the Rich group); 

(III)  Concentrated Risk Reduction and Cost Incidence (Poor individuals receive a 1-in-100,000 

risk reduction, and pay the costs); and (IV) Regressive Risk Transfer (Poor individuals suffer an 

increase in risk of 1-in-100,000, with Rich individuals receiving a risk reduction of the same 

amount—as would occur with a decision to site a hazardous facility in a geographic location that 

is closer to where Poor rather than Rich individuals reside).    

 Table 7 shows how each of these policy choice would be evaluated by traditional CBA, 

summing monetary equivalents; CBA with population-average rather than differentiated VSL 

values; CBA with utilitarian weights; and CBA with isoelastic weights.  In the case of Uniform 

Risk Reduction and Cost Incidence, utilitarian CBA is only willing to impose a relatively low 

uniform income reduction (as compared to traditional or population-average CBA), and 

isoelastic CBA a yet lower income reduction: a larger reduction would still be net beneficial for 

the Rich (given their larger VSL values), but too large a net welfare loss for Poor. Conversely, in 

the case of Uniform Risk Reduction and Redistributive Incidence,  utilitarian CBA is willing to 

impose a larger income reduction (now borne by Rich) than traditional or population-average 

CBA, and isoelastic CBA yet larger. 
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Table 7: The Effect of Distributional Weights on Different Kinds of Risk Policies 

 

  

Uniform Risk 

Reduction and 

Cost Incidence     
 

Maximum per 

capita cost 

imposed 

uniformly on Rich 

and Poor 

 

Uniform Risk 

Reduction and 

Redistributive 

Incidence 

 

Maximum per 

capita cost 

imposed on Rich 

 

Concentrated Risk 

Reduction and 

Cost Incidence 
 

 

Maximum per capita 

cost imposed on 

Poor 

 

Regressive Risk Transfer 

 

 

“Yes” if the transfer is assigned a 

positive sum of monetary 

equivalents, “No” if it is assigned a 

negative sum, “Neutral” if 

assigned a zero sum 

CBA w/o weights    $51.67  $103.33 $3.84  Yes 

VSL
Rich

/VSL
Poor

 = 25.9 > 1 

 

CBA with utilitarian 

weights  

   $7.54  $194.97 $3.84 Yes 
(VSL

Rich
/VSL

Poor
) ÷                     

(U-Weight
Poor

/UWeight
Rich

) = 

1.04 > 1 

CBA with isoelastic 

weights, γ = 0.5 

   $7.45  $197.21 $3.84 Yes 
(VSL

Rich
/VSL

Poor
) ÷                   

(Iso-Weight
Poor

/Iso-Weight
Rich

) = 

1.02 > 1 

CBA with isoelastic 

weights, γ = 1 

   $7.37  $199.50 $3.84 No 

(VSL
Rich

/VSL
Poor

) ÷                   

(Iso-Weight
Poor

/Iso-Weight
Rich

) = 

0.99 < 1 

CBA with isoelastic 

weights, γ = 2 

   $7.22  $204.23 $3.84 No 

(VSL
Rich

/VSL
Poor

) ÷                   

(Iso-Weight
Poor

/Iso-Weight
Rich

) = 

0.95 < 1 

CBA with 

population average 

VSL  

   $42.33  $84.67 $42.33 Neutral 
Cost to Poor = $42.33 

(VSL
Avg

/100000) = Benefit to Rich 

  

Note:  These calculations assume the scenario of λ =2 and a subsistence level of 1000.  The population-average VSL 

of $4.233 million is calculated by assuming that individuals are uniformly distributed from income levels of Poor = 

$20,000 in $10,000 increments to Rich = $100,000; and that background fatality risk decreases linearly from the 

Poor level of 0.01 to the Rich Level of 0.005.  

 

 In the case of Concentrated Risk Reduction and Cost Incidence, population-average CBA 

violates the Pareto principle: government may end up imposing an income loss much greater 

than the Poor are willing to pay for a 1-in-100,000 risk reduction.  (This break-even income loss 

is approximately VSLPoor times the risk reduction, which in the scenario covered by the table is 

$3.84.)  Note that traditional CBA avoids this unpleasant result, but so do the weighted versions. 
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 Although the use of population-average CBA conflicts with the Pareto principle, and 

more generally lacks any theoretical basis, it does have a key intuitive advantage: in a case such 

as Regressive Risk Transfer, traditional CBA approves the transfer while population-average 

CBA is neutral.  Interestingly, utilitarian CBA also approves the regressive transfer, and 

isoelastic CBA will also do so for a sufficiently low value of inequality aversion—but as that 

level becomes higher isoelastic SWF “switches” and favors a progressive risk transfer from Poor 

to Rich.  

 

Heterogeneity of Preferences  

 One cluster of worries about distributional weights arises from heterogeneous 

preferences.  Here, we should distinguish between two kinds of heterogeneity: of moral 

preferences, and of personal preferences. 

 Heterogeneity of moral preferences is no threat to the view of distributional weighting 

presented here.  Some citizens or officials will oppose CBA as a criterion for assessing 

governmental policies, while others will endorse CBA.  Within the latter group, some will be 

persuaded by the Kaldor-Hicks defense of CBA, while other will find the SWF framework more 

attractive.  Weighting is a procedure that operationalizes the moral preferences of this last group 

in a systematic form. 

 Thus critiques of distributional weights as “value laden” are inapposite.  Of course the 

decision to use weights, and the choice of SWF to be mirrored by weights, are “value laden”—

but so is the decision to use CBA at all, or to use the unweighted variant.  These decisions, too, 

involve a whole series of contestable moral judgments.   Governmental officials inevitably make 

such judgments, or work for higher-ups who do. 

 The use of distributional weights does raise questions of institutional role.  An unelected 

bureaucrat might feel that it would be legally problematic, or democratically illegitimate, for her 

to specify weights.  Who in government gets to act on contestable moral preferences is a 

complicated (and itself contestable) question of law and democratic theory.  Suffice it to say that 

the advice welfare economists and moral theorists provide about the specification of weights is 

addressed to officials with the legal and democratic authority to act on such advice—whoever 

exactly those officials may be.  

 Heterogeneity of personal, as opposed to moral, preferences poses more of a threat to the 

SWF framework and thus distributional weights.  Why is that?  The SWF approach, and welfare 

economics more generally, has always adopted a preference-based view of well-being.  Utilities 

are a measure of preference-satisfaction. More specifically, if one identifies well-being with the 

satisfaction of personal (self-interested) preferences, then utilities measure the satisfaction of 
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these preferences.  But heterogeneity of personal preferences constitutes a real challenge to the 

construction of utilities that are interpersonally comparable.  

 With common personal preferences, a interpersonally comparable utility function unique 

up to a ratio transformation can be constructed (as discussed above) by identifying a vNM utility 

function representing these common preferences—a function then “zeroed out”  by assigning 

zero to a threshold  bundle.  However, with heterogeneous personal preferences, there is no 

single preference structure to be represented in this manner. 

 Using each person’s utility function to quantify her bundles is clearly a nonstarter.  The 

difficulty is that these individual functions are not unique.  Assume that uJim(.) is a vNM function 

that represents Jim’s preferences over lotteries, and assigns zero to what Jim regards as a 

threshold bundle.  Any other function vJim(.) which equals uJim(.) multiplied by a positive 

constant will also, then, be a function representing Jim’s preferences over lotteries, and assigning 

zero to Jim’s threshold bundle.   For any assignment of utility numbers to Jim’s attributes, we 

could equally well multiply those numbers by a positive constant aJim.  And this would defeat 

interpersonal comparability, as illustrated above in Table 2. 

 Welfare economists have developed better proposals for making interpersonal 

comparisons notwithstanding preference heterogeneity.  (For overviews, see Boadway 2012, pp. 

199-217; Adler and Fleurbaey, forthcoming).  This is an ongoing area of research, which I lack 

space to review in depth here—except to say it has direct implications for distributional 

weighting, with each of the various proposals corresponding to a particular methodology for 

setting weights in the presence of divergent personal preferences. 

 One possibility is to expand the space of attributes.  Heterogeneity with respect to a 

subset of attributes might reflect a deeper commonality.  For example, married persons might 

have different preferences over health-consumption bundles than single persons, but such 

divergence is consistent with common preferences over bundles consisting of health, 

consumption, and marital status.   Although heterogeneity at the deepest level cannot be ruled 

out, expanding the space of attributes may at least reduce the degree of heterogeneity. 

 A second possibility is to pool utility functions.  If U = {u(.), u*(.), u**(.), …} is the set 

of utility functions each member of which represents the personal preferences of some subset of 

the population, then we assign an array of weights—one for each member of U.  A policy is 

decisively better only if better according to all the weights.   This has the advantage of being a 

straightforward generalization of the case of common preferences—the disadvantage of creating 

zones of indeterminacy where weighting schemes disagree, perhaps large such zones if 

preference heterogeneity is substantial.   

 A third proposal is to make “equivalent income” the measure of well-being.  The 

decisionmaker identifies a reference level of prices and reference bundle of non-income 

attributes, p
ref

 and a
ref

.  Someone’s equivalent income for a given bundle (c, p, a), depends upon 
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her preferences.  It is the amount, c
equiv

, such that she would be indifferent between (c
equiv

, p
ref

, 

a
ref

) and (c, p, a).    Recent work has shown how equivalent income can be used to calculate 

distributional weights.  (Fleurbaey, Luchini, Muller, and Schokkaert, 2013). 

 A fourth proposal builds upon John Harsanyi’s concept of “extended preference.”   

(Harsanyi 1986, ch. 4).  If B is an ordinary bundle, let a hybrid bundle be a combination of an 

ordinary bundle and a personal preference structure R.   We can imagine the decisionmaker 

ranking hybrid bundles, and lotteries over hybrid bundles—under the constraint that if someone 

with personal preferences R prefers bundle B to bundle B*, then the decisionmaker should prefer 

bundle (B, R) to bundle (B*, R).  An extended utility function represents these extended 

preferences, and can—in principle—be used to assign utility numbers for an SWF, and to 

generate distributional weights.   This approach to weighting, like the equivalent-income 

approach, will take account both of individuals’ attributes and of their personal preferences; and 

it can avoid the indeterminacy of the pooling approach.  (See Adler and Fleurbaey, forthcoming, 

for a comparison of equivalent incomes and extended preferences).   

 There is a final wrinkle to the problem of preferences and preference-heterogeneity.  

Although I have assumed up to this point that utilities should measure personal preferences, this 

is not a point of universal consensus among economists.  Some take the position (explicitly or 

implicitly) that someone is better off if any of her preferences are satisfied—not merely her self-

interested preferences, but her fairness preferences, altruistic preferences, and for that matter her 

moral preferences.  (Kaplow and Shavell 2002, 18-24). 

 The SWF framework, and thus distributional weights, are formally consistent with a wide 

range of views about the kinds of preferences that should be the basis for utility numbers—

whether or not such views are substantively plausible.  The main formal difficulty occurs when 

such preferences are heterogeneous.  For example, imagine that utilities are supposed to 

represent the combination of individuals’ personal and fairness preferences. (Johnasson-Stenman 

and Konow, 2008).  An individual’s “attributes” should therefore describe not only her own 

consumption, health, etc., but how she fares relative to others.   If individuals have common 

personal-plus-fairness preferences over bundles of these sorts of attributes, then a vNM 

representation of such preferences can function as the input to an SWF, and as the basis for 

distributional weights.  (Someone’s MUi weight, specifically, would measure the extent to which 

a small increase in his consumption enhances his self-interest or his sense of fair treatment.)  
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 It is regularly suggested that distributional goals should be handled by the tax system, 

with non-tax governmental bodies (such as regulatory agencies or bodies that provide public 

goods) focused solely on “efficiency.” More precisely, it might be claimed that the case for 

distributional weights is undermined by the existence of a governmental system for taxing 

income, consumption, or wealth, as well as paying income subsidies (“the tax system”). In 

considering this claim, we should distinguish three quite distinct lines of argument. 

 (1) If taxes-and-transfers are optimal, distributional weights are uniform 

 Assume that the decisionmaker with legal authority over some non-tax body has moral 

preferences reflected in a utilitarian or isoelastic SWF, and that the legislature (which controls 

the tax system) has the very same moral preferences.  Assume, further, that the tax system is a 

“lump sum” system, meaning: (a) There is zero administrative cost to collecting taxes or paying 

subsidies. (b) The system has no adverse incentive effects: the level of each individual’s labor 

supply and other non-consumption attributes (such as health), and the total produced stock of 

each type of marketed good and service, is independent of the level of taxes and subsidies.  (c) 

Each individual’s attributes are observable to the officials who administer the tax system.  

 With all these assumptions in place, utilitarian or isoelastic distributional weights will be 

identical for all individuals. (See Dreze and Stern 1987, pp. 935-37; Salanie 2003, pp. 79-83; 

Appendix.)  In the case where the legislature and decisionmaker share utilitarian moral 

preferences, the legislature will have enacted taxes-and-transfers that equalize individuals MUi 

values. And in the case where they have isoelastic moral preferences (with the same value of γ), 

the legislature will have enacted taxes-and-transfers that equalize individuals’ MUi  × MMVUi 

values. In either case, the decisionmaker can maximize her preferred SWF by undertaking CBA 

without weights.    

 However, the assumptions can readily fail.  First, the decisionmaker may have different 

moral preferences from the legislature’s, or some members of the legislature.  For example, a 

President elected by one political party may have more strongly egalitarian preferences than the 

competing party that controls the legislature.  He embraces a isoelastic SWF, while they are 

utilitarians.  He is utilitarian, while they are libertarians.  If so, and even if the tax system is a 

“lump sum” system, the status quo distribution of income could well be such that distributional 

weights according to the SWF that the President endorses are unequal. Thus the President (given 

his moral preferences) would have good moral reason to direct non-tax bodies within his control 

to use CBA with distributional weights; and he might well also believe that doing so is 

democratically and legally legitimate.  

 It is worth noting, here, that a diversity of moral preferences (on the part of diverse 

governmental decisionmakers) is reflected in the actual institutional history of CBA in the U.S.  

Since 1981, a Presidential order has directed Executive Branch agencies to use CBA as a general 

tool for evaluating regulation; but proponents of CBA have never succeeded in persuading 
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Congress to embody this directive in a statute.  (Wiener 2006, pp. 461-66.)  Thus it is hardly 

science fiction to suppose that a President might prefer to move CBA, now in place, in a more 

egalitarian direction, but be unable to secure tax-code changes reflecting this preference.  

 Second, even if the legislature and decisionmaker share a moral commitment to a 

utilitarian SWF or to an isoelastic SWF with a particular value of γ, the absence of a lump-sum 

tax-and-transfer system may mean that distributional weights in the status quo are not equal by 

the lights of the shared SWF.  The most systematic scholarly thinking about non-lump-sum 

taxation has occurred in the field of optimal tax theory, where it is traditionally assumed that 

individuals’ labor incomes are observable by government but that their underlying abilities 

(yielding higher wages for more able individuals) are not; that higher income taxes will 

disincentive labor at the margin, since individuals have a preference for leisure as well as for the 

consumption of marketed goods; and that the tax code is set to maximize an SWF, e.g., a 

utilitarian or isoelastic one.  (See, e.g., Boadway 2012; Kaplow 2008; Salanie 2003; Tulomala 

1990.)   It is not generally true in this context that the optimal taxes (in light of this SWF) will 

yield a pattern of income and non-income attributes such that distributional weights (in light of 

that same SWF) are equal.  (Fleurbaey, Luchini, Muller, and Schokkaert 2013; Layard 1980).   

The optimal-tax setup typically ignores administrative costs; adding these to the tax system may 

also help to produce unequal distributional weights at the optimum. (See Quiggin 1995.) 

 Finally, a scheme of distributional weights is a schedule, assigning different individuals 

(or groups) weights as a function of their status quo attributes.  If the tax system has operated to 

produce a pattern of attributes such that individuals have uniform MUi or MUi × MMVUi values, 

the schedule will assign uniform weights, and will reduce to unweighted CBA; otherwise, 

weights will be unequal.  The possibility that weights will be identical under certain conditions is 

not, itself, an argument against such a schedule.   

 (2) Whether or not distributional weights are uniform, the decisionmaker can produce a 

Pareto-superior result by a combination of unweighted CBA and tax changes  

 A second and more powerful argument against the use of distributionally weighted CBA 

derives from Hylland and Zeckhauser (1979) and has been developed very fully in recent years 

by Kaplow (see, e.g., Kaplow 1996, 2008).  The argument can be articulated as follows.  

Consider a non-tax decisionmaker who endorses some Paretian SWF (be it the isoelastic SWF, 

the utilitarian SWF, or any other SWF that respects the Pareto principle).  Assume that some 

policy P* is chosen by traditional CBA without weights, as opposed to an alternative policy P.  

Regardless of the pattern of status quo attributes—regardless whether this pattern is such as to 

produce uniform or nonuniform distributional weights in light of the SWF—it will be Pareto-

superior for the decisionmaker to implement policy P* together with matching changes to the tax 

code, as opposed to enacting P.  If P* passes a traditional CBA test relative to P, then those who 

gain from P* have enough to compensate those who lose.  Moreover, Kaplow shows how these 

gains can be redistributed from the winners to the losers to yield a Pareto-superior result even 
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with a non-lump-sum tax system.  (Specifically, he works within the set-up from optimal tax 

theory, which takes account of the unobservability of individuals’ underlying abilities, and of the 

labor-disincentive effects of an income tax.)   Now note, finally, that if P* together with a change 

to the tax code is Pareto-superior to P, any Pareto-respecting SWF will favor that package as 

opposed to the enactment of P.    

 Kaplow’s analysis relies on a key technical assumption of labor separability, which 

allows him to construct tax changes that do not change labor supply.  This assumption has no 

clear empirical basis, and a different assumption is adopted by much scholarship in 

environmental economics.  (Johansson-Stenman 2005; Fullerton 2009, p. xxi).  Moreover, the 

analysis does not consider the administrative costs of changes to the tax system, or—once 

again—the possibility that a non-tax decisionmaker who favors some SWF may not control the 

tax system.  Imagine that a decisionmaker has the power to choose between P and P*.  If the tax 

code does not change, her morally preferred SWF favors P over P*.   Although P* bundled with 

a change to the tax code is Pareto-superior to P, the decisionmaker does not believe the 

legislature will make this tax change.   She is therefore morally justified in picking P. 

 Given these limitations, Kaplow’s analysis does not demonstrate that a decisionmaker 

favoring some SWF should refrain from putting in place or following a matching schedule of 

distributional weights.  Rather, the analysis has a less dramatic—but still very important—

implication. It suggests that the “policies” being considered—using the schedule—should 

include not merely non-tax policies, but also such policies combined with changes to the tax 

code where the decisionmaker believes these changes to be politically feasible.  In some cases, P 

will be favored by distributionally weighted CBA (mirroring the SWF) over P*; but P* together 

with a politically feasible change to the tax system will be favored by distributionally weighted 

CBA over P, even given  the actual administrative costs of this change, and  the predicted 

incentive effects of the change on labor supply (zero or not).   If P*-plus-the-feasible-tax-change 

is Pareto superior to P, distributionally weighted CBA will prefer the first option to the second; 

and it might do so even absent Pareto superiority. 

 In short, decisionmakers favoring an SWF mirrored by distributional weights should 

consider an expanded menu of policy options—to include tax system changes, if feasible, as well 

as non-tax policies—but the existence of the tax system does not show that they should abandon 

weighting entirely.  

 (3) The adverse incentive effects of distributional weights 

 Distributional weights might have adverse incentive effects. A lower weight for those 

with higher income might disincentivize labor or other income-generating activities: by earning 

more income, an individual gives her interests less weight in the policy process, and thus 

increases the chance of policies that benefit others at her expense. Similarly, a lower weight for 

those in better health might discourage healthy lifestyles. 
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 The incentive effects of income tax rates have been intensively studied; by contrast, the 

incentive effects of distributional weights are little discussed, even within scholarship on 

weighting.  It is possible that heterogeneity in weights would be less salient to the public than 

heterogeneity in tax rates, so that incentive issues would be less significant in the first case.  (Cf. 

Jolls 1998.) The topic needs more scholarly examination. 

 In any event, the lesson here is that decisionmakers favoring some SWF must consider 

incentive effects, and may need to modulate the weights in light of such effects.  But this does 

not mean that optimal weights are equal.  (Consider that incentive arguments may argue for a 

less progressive schedule of marginal tax rates, but have certainly not demonstrated that marginal 

rates should be equal.) 

 

Conclusion 

This Article has shown how to “put structure” on the problem of distributional weights, 

and has addressed some recurrent objections.  The decision to use weights to mimic a particular 

SWF does require an ethical/moral judgment, but so does the decision to use unweighted CBA—

a procedure that is intensely controversial outside the community of economists. (Ackerman and 

Heinzerling 2004)  The specification of utilitarian weights is quite straightforward; these simply 

reflect the marginal utility of consumption/income.  The specification of “isoelastic” weights is 

somewhat more complicated—requiring a further ethical judgment regarding the appropriate 

degree of inequality aversion γ, and the specification of a “zero point” (subsistence level) so that 

utility will be measurable on a ratio scale.  Still, some will feel that the utilitarian SWF is 

insufficiently sensitive to distribution, and that this additional complexity is justified.  

 The use of weights will dampen income elasticity in money equivalents for 

environmental goods (such as fatality risk reduction), without producing a conflict with the 

Pareto principle.  The absence of a lump-sum tax system, and the economic and political costs of 

tax reform, undercut the objection that distributional concerns should be wholly relegated to the 

tax code.   Perhaps the most powerful objection to weights is that they presume the interpersonal 

comparability of well-being, which breaks down with heterogeneous preferences.  However, 

recent years have seen theoretical advances on the problem of interpersonal comparisons.  More 

work in this area is critical, and will further refine our understanding of how to set weights 
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Appendix for Adler, “Cost-Benefit Analysis and Distributional Weights: An Overview” 

I.  Utilitarian Distributional Weights under Certainty 

 A. Marginal weights with equivalent variations  

 Let Bi
s
 = (ci

s
, p

s
, ai

s
) be individual i’s bundle of attributes in the status quo s—

consumption, prices, and nonconsumption attributes—and Bi
x
 = (ci

x
, p

x
, ai

x
) individual i’s bundle 

in some alternative outcome x.  Assume common personal preferences.  Let v(.) be a vNM utility 

function representing those preferences, with respect to bundles of marketed goods and 

nonconsumption attributes; and let u(.) = u(c, p, a) be the corresponding indirect utility function, 

i.e., the maximum value of v(.) achievable with (c, p, a).    Let ∆ci
x
 be individual i’s equivalent 

variation for x, relative to the status quo, such that:  u(ci
s
 + ∆ci

x
, p

s
, ai

s
) = u(ci

x
, p

x
, ai

x
). 

 Let w(.) here denote the utilitarian social welfare function.  
1

( ) ( )
N x

ii
w x u


 B .

11
  This 

SWF orders outcomes using the rule: x at least as good as y iff w(x) ≥ w(y).  That ordering, in 

turn, is identical to using the rule:  x at least as good as y iff w(x) – w(s) ≥ w(y) – w(s).  Note that 

w(x) – w(s) = 
1 1

( , , ) ( , , ) ( , , ) ( , , )
N Nx x x s s s s x s s s s s

i i i i i i i i ii i
u c u c u c c u c

 
    p a p a p a p a .  Assume that 

u(.) is continuously differentiable.  Then this last sum is well approximated, for equivalent 

variations sufficiently small, with the standard total-differential approximation:  

1

( , , )s s s
N xi i

ii

u c
c

c







p a
 , with 

( , , )s s s

i iu c

c





p a
 = MUi denoting the partial derivative of u(.) with 

respect to c at the value (ci
s
, p

s
, ai

s
).    (The total-differential approximation to a continuously 

differentiable real-valued function is discussed in any good calculus textbook. See, e.g., Thomas 

and Finney 1998, pp. 933-44; Edwards 1994, pp. 63-76. ) 

 B. Compensating variations 

CBA using compensating variations relative to the status quo can violate the Pareto 

principle.  See Freeman 2003, pp. 61-62; Pauwels 1978.   This problem carries over to CBA with 

compensating variations and distributional weights.  The conflict with Pareto arises because 

variation in prices or nonconsumption attributes across the outcomes being compared can change 

the marginal utility of consumption. 

 For a simple example, assume that there are three outcomes: the status quo, x, and y. 

Prices are the same in all outcomes.  Individuals have a consumption amount and a binary health 

attribute, sick or healthy.  u(.) takes the form:  u(c, healthy) =c; u(c, sick) = 2c/5.    Thus utility is 

linear in consumption in both states, but the marginal utility of consumption is lower when sick, 

                                                 
11

 To write the SWF as a function of indirect utility u(.) depends upon an assumption of individual rationality (that 

each individual in fact maximizes her direct utility given her expenditure budget and the price vector) and market 

equilibrium (that it is possible for all individuals to do without prices changing).  These are, of course, pervasive 

assumptions in neoclassical economics.  
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and an individual would be indifferent, for example, between the bundle ($40,000, healthy) and 

($100,000, sick).  

 Assume that in the status quo one individual, Dylan, has consumption $149,900 and is 

sick.  In outcome x he has consumption $60,000 and is healthy.  In outcome y he has 

consumption $149,970 and is sick.  Note now that Dylan prefers x to y (given the utility function 

representing common preferences, including his); but that his compensating variation for x is 

$40, while his compensating variation for y is larger, $70.    Assume no one else is affected. 

Then CBA summing compensating variations prefers y to x, in violation of Pareto superiority. 

 Nothing changes if we introduce distributional weighting based on status quo attributes, 

since the compensating variations in x and y for Dylan will be multiplied by the same weight (in 

this case, MUi for Dylan is 2/5, because Dylan is sick in the status quo).    

 The problem is “inframarginal” with respect to the underlying attributes, since we have 

jumps in Dylan’s consumption and health state between x and the other two outcomes.   

However, note that the compensating variations themselves are small in the practical sense, and 

we can construct examples to make them arbitrarily small.  For any arbitrarily small positive 

amount CV, let Dylan’s consumption in the status quo be $150,000 – CV – ε (with ε a positive 

number less than 3/2 CV), and let his consumption in y be $150,000 − ε. His consumption in x 

remains $60,000.   Then it can be seen that Dylan’s compensating variation for y (CV) is larger 

than his compensating variation for x (2CV/5 + 2 ε/5), and yet he is better off in x. 

 By contrast (returning to the original example), note that Dylan’s equivalent variation for 

x is $100, while his equivalent variation for y is $70.  Summing equivalent variations (with or 

without distributional weights) satisfies the Pareto principle. 

 Weighting compensating variations by outcome-specific distributional weights would 

cure the violation of the Pareto principle, but is much more complicated than assigning each 

person a single weight dependent just on her status quo attributes, and multiplying her equivalent 

variation for any other outcome by that weight.  

 C. Linear transformations of u(.) 

 If u(.) is a vNM function representing common personal preferences over bundle 

lotteries, then so is u*(.) = au(.) + b, a positive.  Note that MUi according to u*(.) is a positive 

multiple (by a) of MUi according to u(.).  
*( , , ) ( , , )s s s s s s

i i i iu c u c
a

c c

 


 

p a p a
   But of course   

1 1

( , , ) ( , , )s s s s s s
N Nx yi i i i

i ii i

u c u c
c c

c c 

 
  

 
 

p a p a
 iff
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1 1

( , , ) ( , , )s s s s s s
N Nx yi i i i

i ii i

u c u c
a c a c

c c 

 
  

 
 

p a p a
 .  Thus using either set of weights orders 

outcomes exactly the same way. 

 D.  Simplifications of MUi:  Invariance and CRRA 

 For simplicity we are assuming, throughout, that individuals face the same prices in the 

status quo.  We abbreviate u(.), given status quo prices, as u(c, a) and assume, throughout the 

analysis to follow, that prices are fixed at the status quo level p
s
. 

 Assume that the common personal preferences are such that gambles over consumption, 

holding fixed non-consumption attributes, are invariant to the level of non-consumption 

attributes.  Let h(.) be a vNM function of consumption that represents these invariant 

preferences.  Let u(., a) denote the utility values assigned by u(.) to bundles with non-

consumption attributes fixed at level a.  By vNM theory, u(., a) must be a linear transformation 

of h(.).  That is, there must exist a positive constant m(a) and a constant k(a) such that u(c, a) = 

m(a) h(c) + k(a).   (See Keeney and Raiffa, ch. 5).   Thus 
( , )

( ) ( )
s s

s si i
i i

u c
h c m

c


 



a
a   

 Assume now that h(.) takes the CRRA form.  h(c)=(1−λ)
−1

c
1−λ

, or ln c in the case of λ = 

1.  Then hʹ (c) = c
−λ

, and 
( , )

( ) ( )
s s

s si i
i i

u c
c m

c






a
a . 

 Note finally that m(.) will be unity if u(.) takes the additively separable form u(c, a) = 

h(c) + k(a).   Thus with this additively separable form, MUi is just a function of individual i’s 

status quo consumption. 

 To be sure, u(.) is only unique up to a linear transformation; its ranking of bundle lotteries 

is equally well represented by u*(.) = au(.) + b.   If u(c, a) = m(a) h(c) + k(a), then u*(c, a) = 

am(a) h(c) + ak(a) + b.   Thus MUi according to u*(.) also takes the simple form that follows 

from invariance: 
*( , )

( ) *( )
s s

s si i
i i

u c
h c m

c


 



a
a  , with m*(.) = am(.).  

 E.  Inframarginal weights 

 Regardless of the magnitude of equivalent variations, the utilitarian ordering of outcomes 

can be precisely (not approximately) mirrored using inframarginal weights.  Assume that, for all 

outcomes other than the status quo itself, equivalent variations are nonzero. Let θi be a weighting 

factor for individual i which is a function both of i’s status quo attributes and his equivalent 

variation.  (Note that, by contrast, MUi is a function just of i’s status quo attributes).  
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Specifically, let θi = θ(Bi
s
, ∆ci

x
) = [u(ci

s
 + ∆ci

x
, p

s
, ai

s
) – u(ci

s
, p

s
, ai

s
)]/ ∆ci

x
.   Then obviously w(x) 

–w(s) = 
1 1

[ ( , , ) ( , , )] / ( , )
N Nx s x s s s s s x x s x

i i i i i i i i i ii i
c u c c u c c c c

 
       p a p a B  

 A different and equally correct treatment of the inframarginal case, sometimes seen in the 

literature, is as follows.  Consider MUi as a function of individual i’s consumption ci, with prices 

and i’s nonconsumption attributes fixed at the status quo level.  MUi(ci) = 
( , , )s s

i iu c

c





p a
 .  Then 

u(ci
s
 + ∆ci

x
, p

s
, ai

s
) − u(ci

s
, p

s
, ai

s
) = ( )

s x
i i

s
i

c c

i i i

c

MU c dc



  .   The distributional weight for individual i 

is this integral divided by ∆ci
x
.  Note also that, by the mean value theorem, this weight is in turn 

equal to MUi(ci*) at some value ci* in between ci
s
 and ci

s
 + ∆ci

x
. 

 

II. Isoelastic  Distributional Weights under Certainty 

 A. Marginal weights for equivalent variations 

 Let e(.) denote the isoelastic/Atkinson social welfare function.  With γ > 0, 

1 1

1
( ) (1 ) ( )

N x

ii
e x u   


   B  , or 

1
ln ( )

N x

ii
u

 B  if γ = 1.   On the properties of this SWF, see 

generally Adler (2012, ch. 5).   

 The construction of distributional weights directly parallels the construction above of 

utilitarian distributional weights.  With s the status quo, the ranking of outcomes by e(.) is 

identical to their ranking by e(.) – e(s).   But e(x) – e(s) = 

1 1 1

1
(1 ) [ ( , , ) ( , , ) ]

N s x s s s s s

i i i i ii
u c c u c    


   p a p a  .  Using the total differential approximation 

(and the chain rule), this sum is approximated by 
1

( , , )
( , , )

s s s
N s s s xi i

i i ii

u c
u c c

c











p a
p a  , with MUi 

as before equaling 
( , , )s s s

i iu c

c





p a
and the marginal moral value of utility (MMVUi) equaling  

( , , )s s s

i iu c 
p a  .   This is the change in the value of e(.) with a small change in i’s utility.   (To see 

this most directly, write e(.) as e(u1, …, uN) = 1 1

1
(1 )

N y

ii
u  


   . Then i

i

e
u

u





 .) 

 In order for the isoelastic SWF to be not only well-defined, but Paretian (increasing in 

each individual’s utility) and equity-regarding (the sum of a strictly concave function of 

individual utilities, so that greater weight is given to welfare changes at lower utility levels), all 

utility values must be nonnegative, and strictly positive with γ ≥ 1.   Utility values can be zero or 
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positive for γ < 1, e.g., where the Atkinson function is the sum of the square root of utilities (γ = 

½).    

 But note that even with γ < 1, distributional weights for individual i are undefined if u(ci
s
, 

p
s
, ai

s
) = ui = 0.  Thus isoelastic distributional weights require that all individuals in the status 

quo have strictly positive utilities, for all values of γ.  

 While utility levels of zero lead to undefined isoelastic distributional weights, negative 

utility values lead to undefined distributional weights or well-defined weights that are “badly 

behaved.” Consider the three cases of γ = ½, γ = 1/3, and γ = 2.   In the first case, the MMVUi 

term is (ui)
-1/2

 = 1/(ui)
1/2

, which is undefined for negative values of ui.  In the second case, that 

term is 1/(ui)
1/3

, which is well-defined but is, perversely, negative—with the result that utility 

improvements to those at negative levels in the status quo would be seen by weighted CBA as 

social losses!  In the third case, it is 1/(ui)
2
, which is well-defined and positive.  However, these 

weights are increasing with negative inputs.  If uj < ui < 0, 1/(uj)
2
 < 1/(ui)

2
.   Thus weighted CBA 

gives less weight to well-being changes affecting j than i, even though j is worse off than i.   

 These difficulties in isoelastic weights with negative utilities just reflect the fact that the 

isoelastic SWF with negative utilities in its domain is not well-defined and Paretian and equity-

regarding. 

 B. Ratio transformations 

 The isoelastic SWF e(.) is not invariant to linear transformations of utility.  Note that, if 

u*(.) = au(.) + b, with a positive and b possibly nonzero, e(.) using u*(.) does not necessarily 

order outcomes the same way as e(.) using u(.).    Indeed, it can be shown that the only Paretian, 

anonymous, separable SWFs that are invariant to linear transformations of utility are the leximin, 

leximax, and utilitarian SWFs, as well as some other SWFs that are within the class of weakly 

utilitarian SWFs (those that agree with the utilitarian SWF in ranking vectors with different total 

amounts of utility).  See Bossert and Weymark 2004, pp. 1157-58.   

 However, the isoelastic SWF is invariant to ratio transformations of utility.  (It is the only 

continuous prioritarian SWF with this feature; see Adler 2012, ch. 5).    Let u*(.) = au(.), with a 

positive.  Then note that 

1 1 1 1 1 1 1

1 1 1
(1 ) *( ) (1 ) [ ( )] (1 ) ( )

N N Nx x x

i i ii i i
u au a u           

  
      B B B  . Thus e(x) using 

u*(.) as the utility function is a constant factor (a
1−γ

) times e(x) using u(.) as the utility function, 

and the ordering of outcomes is therefore the same with either utility function.  

 How should we arrive at a utility function unique up to a ratio transformation?  Let B
Zero

 

be a threshold bundle, such that everyone (given their common personal preferences) is 

indifferent between this bundle and nonexistence.  Then let u(.) be a utility function which (1) is 

a vNM utility function that represents the common ranking of bundle lotteries, and (2) assigns 
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the number zero to B
Zero

.    Note that if any other u*(.) has these properties, there must be a 

positive a such that u*(.) = au(.).   (Since u*(.) is a vNM function, there must be a positive a and 

a b such that u*(.) = au(.) + b; but if u*( B
Zero

) and u(B
Zero

) are zero it follows that b = 0).  Now, 

u(.) and any u*(.) equaling au(.) can be used as inputs to the isoelastic SWF. On these issues, see 

generally Adler (2012, ch. 3). 

 Because utilities must be positive for well-defined and well-behaved distributional 

weights (see above), all bundles in the outcomes under consideration must be strictly preferred to 

B
Zero

  and thus assigned positive values by u(.) and all ratio transformations. 

 Finally, to see how linear and ratio transformations of utility affect isoelastic 

distributional weights, recall the formula for the isoelastic distributional weight for individual i 

using utility function u(.):  
( , , )

( , , )
s s s

s s s i i
i i

u c
u c

c

 



p a
p a  .    Let u*(.) = au(.) + b, with a positive.  

Then the formula becomes 
*( , , ) ( , , )

*( , , ) [ ( , , ) ]
s s s s s s

s s s s s si i i i
i i i i

u c u c
u c au c b a

c c

   
 

 

p a p a
p a p a  .    

These weights are a constant multiple of the weights using u(.)—and thus CBA using them 

achieves the same ranking of outcomes—iff b = 0, in which case 

1*( , , ) ( , , ) ( , , )
*( , , ) [ ( , , )] ( , , )

s s s s s s s s s
s s s s s s s s si i i i i i
i i i i i i

u c u c u c
u c au c a a u c

c c c

        
 
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p a p a p a
p a p a p a

 If u(.) is scaled up by positive a, distributional weights are scaled up (without affecting the 

ranking of outcomes) by a
1−γ

 . 

 C.  Simplifications of MUi: Invariance and CRRA 

 As above in the discussion of utilitarian distributional weights and invariance, we 

suppress reference to the price vector, which is fixed at the status quo level.  Assume that the 

common preferences over consumption lotteries, holding fixed nonconsumption attributes a, are 

invariant to the level of a and captured by a utility function h(.) of consumption.  Then if u(.) is a 

vNM function representing the common preferences, u(c, a) = m(a)h(c) + k(a).   Let B
Zero

 = 

(c
Zero

, a
Zero

) be a threshold bundle.   Then m(.), k(.) and h(.) must also be such that u(c
Zero

, a
Zero

) = 

m(a
Zero

) h(c
Zero

) + k(a
Zero

) = 0.   As above, h(.) can but need not take the CRRA form.   In either 

event, the formula for isoelastic distributional weights, 
( , )

( , )
s s

s s i i
i i

u c
u c

c

 



a
a  , simplifies to 

(m(ai
s
)h(ci

s
) + k(ai

s
))

-γ
m(ai

s
)hʹ (ci

s
), which with the CRRA form for h(.) becomes (m(ai

s
)h(ci

s
) + 

k(ai
s
))

-γ
m(ai

s
)(ci

s
)
-λ

.  

 Note that h(.) itself may well be negatively valued, e.g,. with the CRRA form and λ ≥1.    

But if all bundles are above the threshold, k(.) and m(.) will be such that u(.) values are positive.   
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 Consider the additively separable form for u(.): u(c, a) = h(c) + k(a).   In the case of 

utilitarian distributional weights, as shown above, this form means that distributional weights are 

just a function of status quo consumption.  MUi = 
( , )s s

i iu c

c





a
 = hʹ (ci

s
).  By contrast, even with 

the additively separable form, isoelastic distributional weights are not just a function of status 

quo consumption.   
( , )

( , )
s s

s s i i
i i

u c
u c

c

 



a
a  simplifies to (h(ci

s
) + k(ai

s
))

-γ
hʹ (ci

s
).  

 Finally, consider u*(.) which is a positive ratio transformation of u(.), i.e., u*(.) = au(.), 

with a positive.  Note that u*(c, a) = am(a)h(c) + ak(a), and that u*(c
Zero

, a
Zero

) = 0.  Thus the 

simplified forms just described carry over to u*(.), with distributional weights scaled up by the 

constant factor a
1−γ

. 

 

III.   Utilitarian and Isoelastic Distributional Weights under Uncertainty 

 Assume a finite set Z of “states of nature,” with each state z having probability π(z).  As 

in the canonical set-up deriving from Savage (1972), a given choice (whether the status quo 

policy s of inaction, or the choice of some alternative policy P) is a mapping from states to 

outcomes.   More specifically, let Bi
s,z

 be the bundle of individual i in state z, given the status quo 

choice; and Bi
P,z

 be the bundle of individual i in state z, given the choice of policy P. 

 Under uncertainty, the utilitarian SWF ranks policies using the rule:  policy P is at least 

as good as policy P* iff , *,

1 1

( ) ( ) ( ) ( )
N N

P z P z

i i

z i z i

z u z u 
   

   
Z Z

B B  .   Note that the formula 

,

1

( ) ( )
N

P z

i

z i

z u
 

 
Z

B  is an “ex post” formula, taking the expectation of utilitarian social welfare. 

However, it is mathematically equivalent to the “ex ante” formula, summing individuals’ 

expected utilities:   ,

1

( ) ( )
N

P z

i

i z

z u
 


Z

B . 

 By contrast, with a nonutilitarian SWF such as the isoelastic SWF, the “ex post” and “ex 

ante” formulas are not equivalent.   The “ex post” isoelastic SWF ranks policies using the rule:  

policy P is at least as good as policy P* iff 

1 , 1 1 *, 1

1 1

( )(1 ) ( ) ( )(1 ) ( )
N N

P z P z

i i

z i z i

z u z u       

   

     
Z Z

B B .  The “ex ante” isoelastic SWF 

ranks policies using the rule: P at least as good as P* iff 
1 1

1 , 1 *,

1 1

(1 ) ( ) ( ) (1 ) ( ) ( )
N N

P z P z

i i

i z i z

z u z u

 

   

 

 

   

   
     

   
   

Z Z

B B  .  Note that the term 
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,( ) ( )P z

i

z

z u



Z

B  is individual i’s expected utility given policy P, and that the “ex ante” isoelastic 

approach sums these expected utilities transformed by raising them to the power (1−γ) and 

multiplying by (1−γ)
−1

. 

 Under uncertainty, monetary equivalents can be defined as follows: the change in an 

individual’s consumption which counterbalances the difference in his expected utility between 

two choices, if the change occurs in every state.  More precisely, individual i’s equivalent 

variation for policy P is the amount ∆ci
P
 such that: 

 
, , , , , ,( ) ( , , ) ( ) ( , , )s z P s z s z P z P z P z

i i i i i

z z

z u c c z u c 
 

  
Z Z

p a p a . 

 The construction of utilitarian distributional weights proceeds parallel to the certainty 

case. The utilitarian ranking of policies is equivalent to that achieved by using the following 

formula to rank policies:  , , , , , ,

1 1

( ) ( , , ) ( ) ( , , )
N N

P z P z P z s z s z s z

i i i i

i z i z

z u c z u c 
   

 
Z Z

p a p a , which simply 

subtracts a constant (expected utilitarian social welfare in the status quo) from each side.  By 

definition of the equivalent variation, the formula just provided is in turn equivalent to  

, , , , , ,

1 1

( ) ( , , ) ( ) ( , , )
N N

s z P s z s z s z s z s z

i i i i i

i z i z

z u c c z u c 
   

  
Z Z

p a p a .    And this can now be 

approximated, with the total-differential approximation, as 

, , , , , ,

1 1

( , , ) ( , , )
( ) ( )

s z s z s z s z s z s zN N
P Pi i i i
i i

i z i z

u c u c
z c c z

c c
 

   

  
    

  
  

Z Z

p a p a
 .   Note that the term in 

brackets is the status quo expected marginal utility of consumption for individual i (“EMUi”).  

This term sums the marginal utility of consumption in each state—given the bundle of attributes 

in this state that the individual would possess if the status quo policy s were chosen—discounted 

by the probability of the state.     

 In short, the utilitarian ranking of policies can be approximated by the sum of EMUi × 

∆ci
P
.   

 “Ex ante” isoelastic distributional weights are constructed as follows.  The ex ante 

isoelastic ranking of policies is equivalent to that achieved by using the following formula: 

1 1

1 , , , 1 , , ,

1 1

(1 ) ( ) ( , , ) (1 ) ( ) ( , , )
N N

P z P z P z s z s z s z

i i i i

i z i z

z u c z u c

 

   

 

 

   

   
     

   
   

Z Z

p a p a  .    Substituting 

in the equivalent variation, this becomes: 
1 1

1 , , , 1 , , ,

1 1

(1 ) ( ) ( , , ) (1 ) ( ) ( , , )
N N

s z P s z s z s z s z s z

i i i i i

i z i z

z u c c z u c

 

   

 

 

   

   
      

   
   

Z Z

p a p a  .  And 
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using the total-differential approximation (with the chain rule), this is in turn approximately 

equal to: 

, , ,
, , ,

1

( , , )
( ) ( , , )

s z s z s zN
s z s z s z Pi i
i i z i

i z z

u c
z u c c

c



 



  

  
  

   
  

Z Z

p a
p a     Note that individual i’s equivalent 

variation is now multiplied by the EMUi term plus an additional term, to the left, which is the 

status quo “marginal moral value of expected utility” (MMVEUi):   status quo expected utility 

raised to the power –γ. 

 It turns out to be substantially more complicated to arrive at distributional weights that 

approximate the “ex post” isoelastic SWF.  Why?  If there are Z states in total, let C be a grand 

vector with Z x N entries describing each individual’s state-dependent consumption; and C
s 
be 

the specific vector of Z x N state-dependent consumptions given the choice of the status quo.  Let 

A be a similar such grand vector describing each individual’s state-dependent non-consumption 

attributes, with A
s
 the vector of non-consumption attributes given the status quo.  P and P

s
 

provide the same information regarding prices.   Let F(.) be a continuously differentiable 

function of the form F(C, P, A).  Finally, let ΔC be a vector of N state-independent consumption 

changes (Δc1, …, ΔcN), and let C + ΔC denote vector C with each individual i’s consumption 

increased (in all Z states) by the ith element of ΔC, that is, Δci.   

 Reviewing the analysis above, it can be seen that the value assigned by both the 

utilitarian and “ex ante” isoelastic SWFs to a given policy P can be expressed in the form F(C
s
 + 

ΔC
P
, P

s
, A

s
), with ΔC

P
 just equal to (Δc1

P
 , …, ΔcN

P
).   (The probabilities of the various states, 

which are fixed, are reflected in F.)   The total-differential approximation is therefore available 

in the following form:  the difference between the F value of the policy P and the F value of the 

status quo is approximately 
1

( , , )
N

s s s P

iz
i z i

F
c

c 







Z

C P A  .  Note that the partial derivative terms in 

this summation depend just on each individual’s state-dependent status quo consumption and 

other attributes, plus state-dependent status quo prices—the information contained in (C
s
, P

s
, 

A
s
)—and that this information, together with a single equivalent variation assigned to each 

individual (Δci
P
), can be used to approximate the value of any given policy.  The formulas above 

for using distributional weights to approximate the utilitarian and “ex ante” isoelastic SWFs 

under uncertainty are specific versions of this general formula.  

 By contrast, the value assigned to a given policy by the “ex post” isoelastic SWF cannot 

be expressed in the form F(C
s
 + ΔC

P
, P

s
, A

s
). It is quite possible for two policies, P and P*, to be 

such that ∆ci
P
 = ∆ci

P*
 for all individuals, and yet for the ex post isoelastic SWF to assign the two 

a different value.   For a very simple example, use the isoelastic SWF with γ = 1/2. Assume that 

there are two states of nature, z and z
+
, each with probability 0.5; that society is choosing 

between the status quo, policy P and policy P*; and that individual utility is just a function of 
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consumption.  Every individual except individual j is unaffected by the choice between the status 

quo, P, and P*, i.e., each such individual’s state-specific consumption is the same with all three.   

 With the status quo, individual j has consumption 50 in both states; with policy P, her 

consumption is 70 in one state and 40 in another; with policy P*, her consumption is 100 in one 

state and 10 in another.   Assume that utility (unique up to a ratio transformation) is a constant 

multiple a times consumption.  Recall also that the isoelastic SWF is invariant to ratio 

transformations of utility, so we can just set a =1.  Note now that individual j’s ∆cj
P
 value is 5 

units of consumption, and that her ∆cj
P*

 value is also 5.   (Given that utility is a constant multiple 

of consumption, or more generally linear in consumption, she is indifferent between receiving 55  

units of consumption for sure, a gamble with equal probabilities of 70 and 40, and a gamble with 

equal probabilities of 100 and 10.)   

 However, a quick calculation will show that the ex post isoelastic SWF with γ = ½ 

assigns the status quo a value of 14.14 (plus a constant C to reflect the consumption of 

individuals other than j); it assigns policy P a value of 14.69 (plus the same C); and it assigns 

policy P* a value of 13.16 (plus the same C).  Thus P and P* are assigned different values even 

though ∆cj
P
 = ∆cj

P*
 and ∆ci

P
 = ∆ci

P*
for all other individuals i.   Indeed, note that the ex post 

isoelastic SWF prefers P to the status quo but prefers the status quo to P*; although the two 

policies correspond to the very same vectors of equivalent variations, one is seen by the ex post 

approach as better than the status quo, another worse.
12

 

 The ranking of policies by the ex post isoelastic SWF can be mirrored (precisely, not just 

approximately), by CBA with distributional weights that are policy-specific, i.e., depend upon 

state-dependent prices and individuals’ state-dependent consumption and other attributes for 

each policy (not merely the status quo).  Let the policy specific weight for individual i, wi
P
, be 

defined as follows (assuming equivalent variations are nonzero).  

1 , 1 , 1(1 ) ( ) ( ) ( ) ( ) /P P z s z P

i i i i

z z

w z u z u c     

 

 
    

 
 

Z Z

B B  .  Then it follows that the ex post 

approach ranks P at least as good as P* iff * *

1 1

N N
P P P P

i i i i

i i

w c w c
 

    .   However, in this case the 

calculation of distributional weights is more laborious than directly applying the ex post formula; 

it’s therefore hard to see why policymakers wouldn’t simply do the latter. 

 The ranking of policies by the ex post isoelastic SWF can also be approximated by 

assigning each individual a Z-entry vector of state-specific equivalent variations for each policy 

P (rather than a single equivalent variation Δci
P
), and combining this with information about 

status quo prices and individuals’ status quo consumption and other attributes.   Let Δci
P,z

 be 

                                                 
12

 The possibility of such a case, in turn, reflects the fact that the ex post isoelastic SWF violates the ex ante Pareto 

principle.  See generally Adler (2012, ch. 7). 
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such that u(ci
s,z

 + Δci
P,z

, p
s,z

, ai
s,z

) = u(ci
P,z

, p
P,z

, ai
P,z

).  Then, using the total differential 

approximation, the ex post isoelastic ranking of policies can be approximated by assigning each 

P the following value: 
, , ,

, , , ,

1

( , , )
( , , )

s z s z s zN
s z s z s z P zi i
i i i

i z

u c
u c c

c



 







Z

p a
p a  .  But determining an 

individual array of state-specific equivalent variations could be quite cumbersome, and it is hard 

to see why this approximation offers much economy in decisional effort over direct application 

of the ex post isoelastic formula.   

 

IV. The Value of Statistical Life 

 VSL is the marginal rate of substitution between survival probability and 

consumption/income/wealth.   The simple, standard, one-period model of VSL, relied upon in 

the text, works as follows.  Each individual in the status quo has a consumption amount ci and a 

probability pi of surviving the period.
13

   A policy changes these consumption amounts and/or 

probabilities.   The utility of consumption is structured as follows. Let hsurvive(c) = u(c, survive) 

be the utility of consumption c if the individual survives the period, and hdie(c) = u(c, die) be the 

utility of consumption c if the individual does not survive.   The standard model assumes that, for 

all c: hsurvive(c) > hdie(c); hʹ survive(c) > hʹ die(c) ≥ 0;  hʹ ʹ survive(c) ≤ 0, hʹ ʹ die(c) ≤ 0.     

 For convenience, I omit the superscript “s”; unless otherwise noted, consumption 

amounts and probabilities are status quo values. 

 Let Ui be individual i’s status quo expected utility, i.e., pi hsurvive (ci) + (1−pi) hdie (ci).  

VSLi is i i

i i

U U

p c

 

 
 , which equals 

( ) ( )

( ) (1 ) ( )

survive i die i

i survive i i die i

h c h c

p h c p h c



   
 .     

 Consider a policy P which changes individual i’s survival probability by ∆pi
P
 and his 

consumption by ∆yi
P
.  Let U(c, p) denote expected utility as function of consumption and 

survival probability.
14

   Individual i’s equivalent variation for this policy (an equivalent variation 

under uncertainty, in the sense discussed in the previous part of this Appendix), is the amount 

∆ci
P
 such that U(ci + ∆ci

P
, pi) = U(ci + ∆yi

P
, pi + ∆pi

P
) .   Applying the total-differential 

approximation to both sides of this equation, we have that 

                                                 
13

 Consumption in this simple model is state-independent.  In the status quo, an individual has the same consumption 

in all states of nature; a policy may change his consumption to a different, single, level in all states.  

14
 The functions 

i

i

U

c




and 

i

i

U

p




 are, of course, shorthands for ( , )

U
c p

c




and ( , )

U
c p

p




 with the c input 

understood to be some level of ci, and the p input some level of pi.  
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 P P Pi i i
i i i

i i i

U U U
c y p

c c p

  
    

  
 , i.e., ∆ci

P
 ≈ ∆yi

P
 + VSLi ∆pi

P
.  The equivalent variation is 

approximately equal to the consumption change plus VSL times the survival probability change; 

in other words, VSL is the rate at which small probability changes are converted into equivalent 

consumption changes. 

 My analysis in the text adds two simplifying assumptions: hsurvive(.) is CRRA, and hʹ die(.) 

equals zero.  (This latter assumption, of course, means, that hdie(c) is the same value for all 

consumption amounts.)  I also assume that there exists a subsistence level c* of consumption 

such that hsurvive(c*) = hdie(c) for any c.  

 u(.) and thus hsurvive(.) and hdie(.) are unique up to a linear transformation, which suffices 

for purposes of VSL (or utilitarian distributional weights), but not isoelastic weights.  However, 

as discussed earlier, the threshold bundle used to construct a utility function unique up to a ratio 

transformation is, plausibly, the bundle B
zero

 such that everyone (given common preferences) is 

indifferent between B
zero

 and nonexistence.  And the model of VSL now at hand already defines 

that bundle, namely, (c*, survive) such that u(c*, survive) = u(c, die) for any c. 

 We can therefore rescale u(.) as follows.  Let v(.) = u(.) – u(c*, survive).   Thus v(c*, 

survive) = 0= v(c, die) for any c.   Adding in that hsurvive(.) = u(., survive) is CRRA,  we have that 

u(c, survive) = (1 –λ)
−1

 (c)
1−λ

, and thus v(c, survive) equals:  (1 –λ)
−1

 (c)
1−λ

 − (1 –λ)
−1

 (c*)
1−λ

.   

The formula for VSLi simplifies to:  
1 1 1(1 ) ( * )i

i i

c c

p c

 



   



 
 .   It is this formula which is used to 

calculate the VSL values in Table 6. 

 Let V(ci, pi) be the expected v(.) value as a function of consumption and survival 

probability. Recall that ∆pi
P
 and ∆yi

P
 are the changes in individual i’s survival probability and 

consumption, respectively, produced by policy P.  The utilitarian SWF ranks policies with the 

formula
1

( , )
N

P P

i i i i

i

V c y p p


  , which is equivalent to ranking them using the formula 

1 1

( , ) ( , )
N N

P P

i i i i i i

i i

V c y p p V c p
 

     .  By the total differential approximation, this is 

approximately 
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 Recall now the general formula for utilitarian distributional weights under uncertainty: 

the sum of equivalent variations multiplied by EMUi.   In the context at hand, EMUi is precisely 

i

i

V

c




 which equals pici

−λ
 given the CRRA assumption.  

 In short, with the CRRA assumption, the utilitarian SWF is approximated by 

1 1 1

( )
N N N

P P P P

i i i i i i i i i i i i

i i i

p c VSL p p c y p c VSL p y    

  

         . This can be seen as an instance of 

the general formula for utilitarian weights under uncertainty, with the equivalent variation in turn 

approximated as ∆yi
P
 + VSLi ∆pi

P
. 

 Similarly, the ex ante isoelastic ranking of policies is given by 

1 1

1

(1 ) ( , )
N

P P

i i i i

i

V c y p p   



    , or equivalently by 

1 1 1 1

1 1

(1 ) ( , ) (1 ) ( , )
N N

P P

i i i i i i

i i

V c y p p V c p     

 

       .  This is approximately 

1

( , ) ( )
N

P Pi i
i i i i

i i i

V V
V c p y p

c p





 
  

 
  , which becomes 

1

( , ) ( )
N

P P

i i i i i i i

i

V c p p c VSL p y  



  , with 

V(ci, pi) =  pi ((1 –λ)
−1

 (ci)
1−λ

 − (1 –λ)
−1

 (c*)
1−λ

).   This is an instance of the general formula 

earlier for the ex ante isoelastic SWF under uncertainty, with MMVEUi here V(ci, pi)
-γ

. 

 

V.  Taxation 

 Here I provide a brief argument for why a legislature that engages in taxation to 

maximize a utilitarian or isoelastic SWF will redistribute consumption so that distributional 

weights in light of that SWF are identical for all individuals—under the first-best conditions of a 

lump-sum tax that can be administered without administrative costs, without changing the total 

stock of each marketed good or individuals’ nonconsumption attributes, and with individuals’ 

attributes observable to the taxing authority.  As throughout this Appendix, individuals are 

assumed to have common personal preferences representable by a common utility function.   

 Assume first, for simplicity, that there is a single consumption good, and that ci denotes 

individual i’s consumption of that good.  Utility takes the form u(ci, ai), without prices as an 

argument, since the individual directly consumes ci rather than expending it among an array of 

goods.  (As throughout, ai denotes individual i’s nonconsumption attributes, including labor 

supply, health, etc., here assumed to be exogenous to the tax scheme.)  Let C denote the total 

stock of the good (the total available for distribution to the population after government 

expenditure on public goods or other programs).  The utilitarian legislature maximizes 
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1

( , )
N

i i

i

u c


 a  subject to the constraint that 
1

N

i

i

c C


  , while the isoelastic legislature maximizes 

1 1

1

(1 ) ( , )
N

i i

i

u c   



  a  , subject to the same constraint.  Straightforward constrained optimization 

shows that, at the utilitarian optimum, for any pair of individuals i and j, ( , ) ( , )i i j j

u u
c c

c c

 


 
a a  

.  Similarly, at the isoelastic optimum, ( , ) ( , ) ( , ) ( , )i i i i j j j j

u u
u c c u c c

c c

   


 
a a a a  . 

 Consider now the case in which there are M types of marketed goods, m =1 to M.  Let gi
m
 

denote individual i’s holding of good m, and gi her vector of all M marketed goods.  The direct 

utility function, v(.), takes the form v(gi, ai).   The total stock of each marketed good m is fixed at 

Sm.  The legislature maximizes a utilitarian SWF or isoelastic SWF —
1

( , )
N

i i

i

v


 g a  or 

1 1

1

(1 ) ( , )
N

i i

i

v   



  g a  , respectively —subject to M constraints, each of the form 
1

N
m

i

i

g


  =Sm.   In 

the utilitarian case, the Lagrangian for the optimal allocation of the M goods across the N 

individuals takes the form: 1 1

1

1 1 1

( , ) ( ) ... ( )
N N N

M M

i i i i M

i i i

v g S g S 
  

      g a  . It follows that the 

utilitarian optimal allocation is such that, for each good m, and any two individuals i and j, 

( , ) ( , )i i j jm m

v v

g g

 


 
g a g a  .  Similarly, in the isoelastic case, the optimal allocation is such that 

( , ) ( , ) ( , ) ( , )i i i i j j j jm m

v v
v v

g g

   


 
g a g a g a g a  for any two individuals i and j. 

 This analysis shows that the marginal utilitarian or isoelastic social value of each good is 

equalized across individuals at the optimum.  In turn, the second welfare theorem shows that the 

utilitarian optimal allocation is the market equilibrium of some set of prices p and lump sum 

consumption (expenditure) amount ci for each individual,
15

 with 1

1

M
m

i i

m

p g c


  ; and the same is 

true for the isoelastic optimum.   At each optimum (whether utilitarian or isoelastic), each 

                                                 
15

 On the second welfare theorem, see Mas-Collel, Whinston and Green (1995, pp. 551-58).   

For the second welfare theorem to obtain, we must assume that preferences have an appropriate structure.  Also, the 

second theorem is normally stated for the case in which individual utility is merely a function of marketed goods.  

However, individuals are allowed to have heterogeneous preferences over goods.  v(.) corresponds to a conditional 

utility function over good bundles for each possible individual array of nonconsumption attributes. In effect, 

individuals with attributes a have certain preferences over goods, individuals with attributes a* possibly different 

preferences, etc.  The second welfare theorem then says that any desired allocation of the goods among these 

individuals (if Pareto optimal) can be achieved as a market equilibrium. 
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individual i maximizes her utility given that her total expenditure is constrained to be ci.  With 

u(.) the indirect utility function, u(ci, p, ai) = v(gi, ai), and also ( , , ) (1/ ) ( , )m

i i i im

u v
c p

c g

 


 
p a g a  

for every one of the M goods.   

 But ( , ) ( , )i i j jm m

v v

g g

 


 
g a g a for any two individuals i and j at the utilitarian optimum.  

It therefore follows that ( , , ) ( , , )i i j j

u u
c c

c c

 


 
p a p a  for any two individuals i and j at the 

utilitarian optimum.    Similarly, ( , ) ( , ) ( , ) ( , )i i i i j j j jm m

v v
v v

g g

   


 
g a g a g a g a  for any two 

individuals at the isoelastic optimum.   Thus 

( , , ) ( , , ) ( , , ) ( , , )i i i i j j j j

u u
u c c u c c

c c

   


 
p a p a p a p a  at the isoelastic optimum.  

 

  

 

 

 


