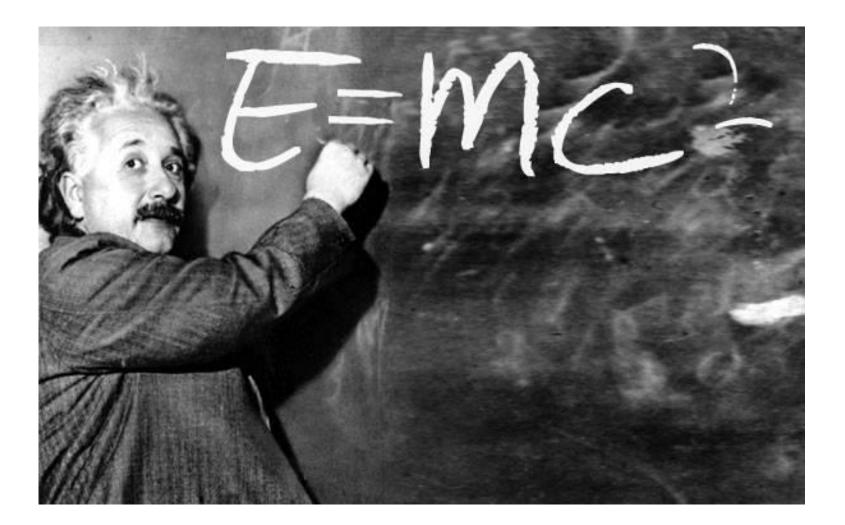
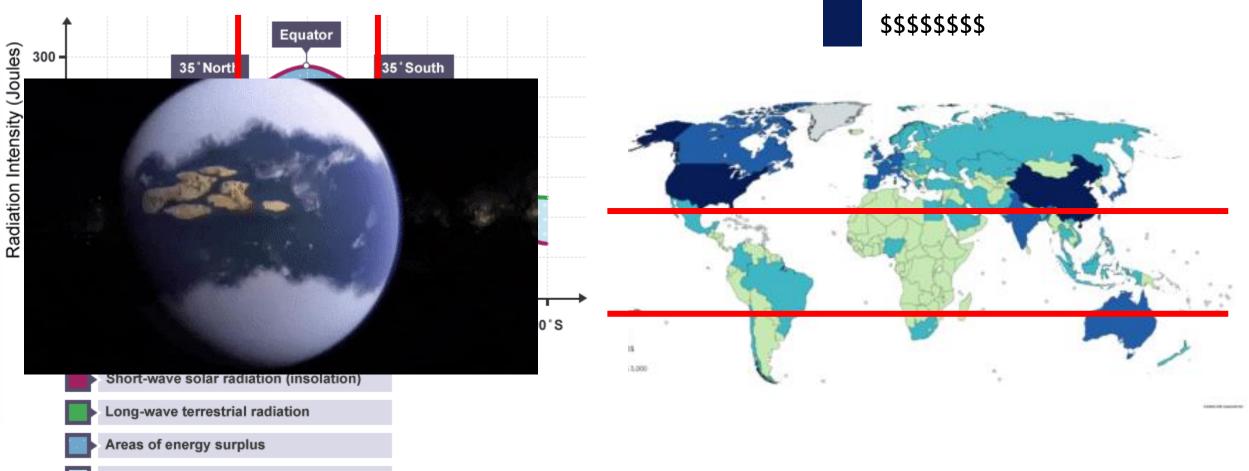


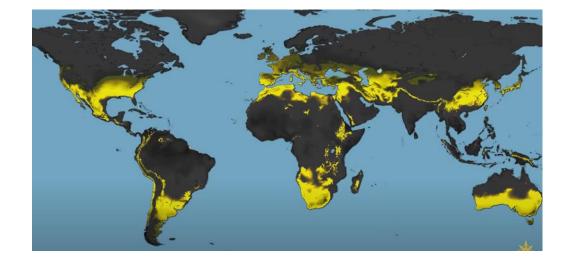
Energy Business Scenarios


Gonçalo Amarante Guimarães Pereira 27/03/2023



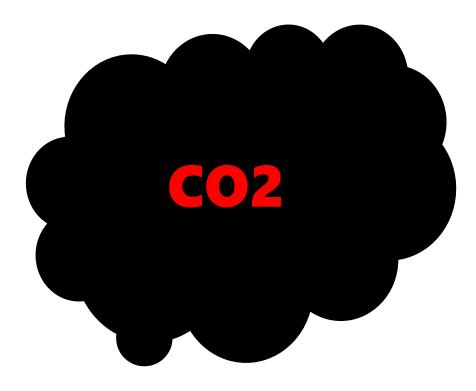
Follow the Energy...

The Global Energy Scenario



Why this Paradox?

How to Solve?

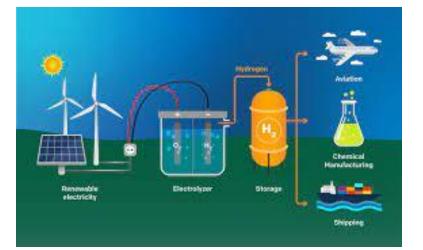

21 – 23 °C

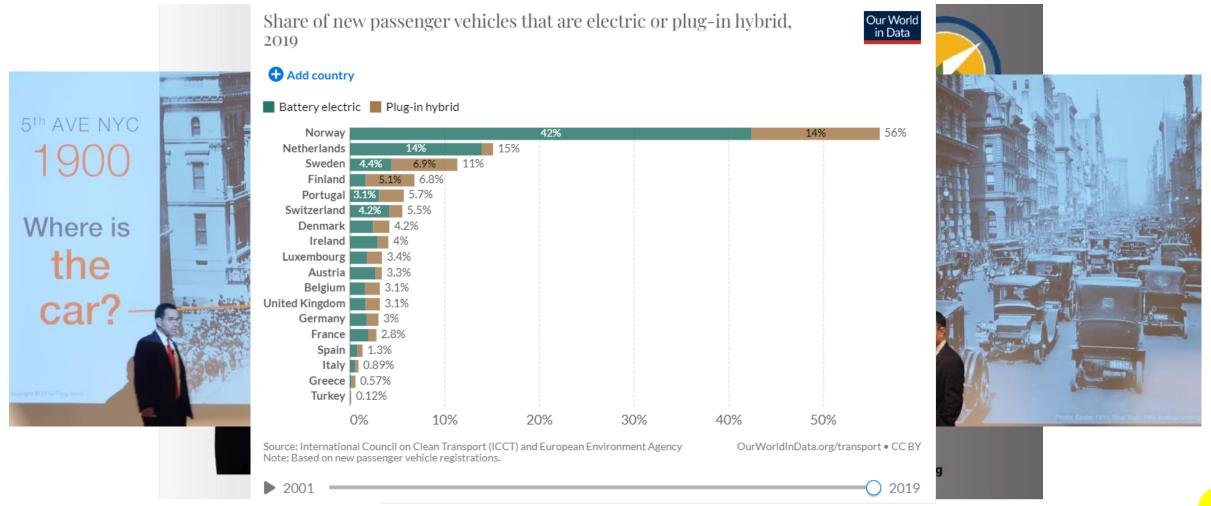
Side Effect

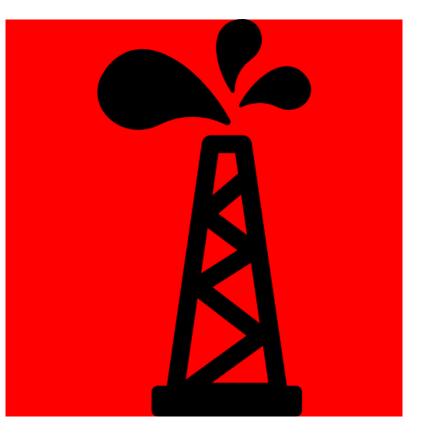
Carbon Tunnel

CO2 is The Global Problem

Thesis



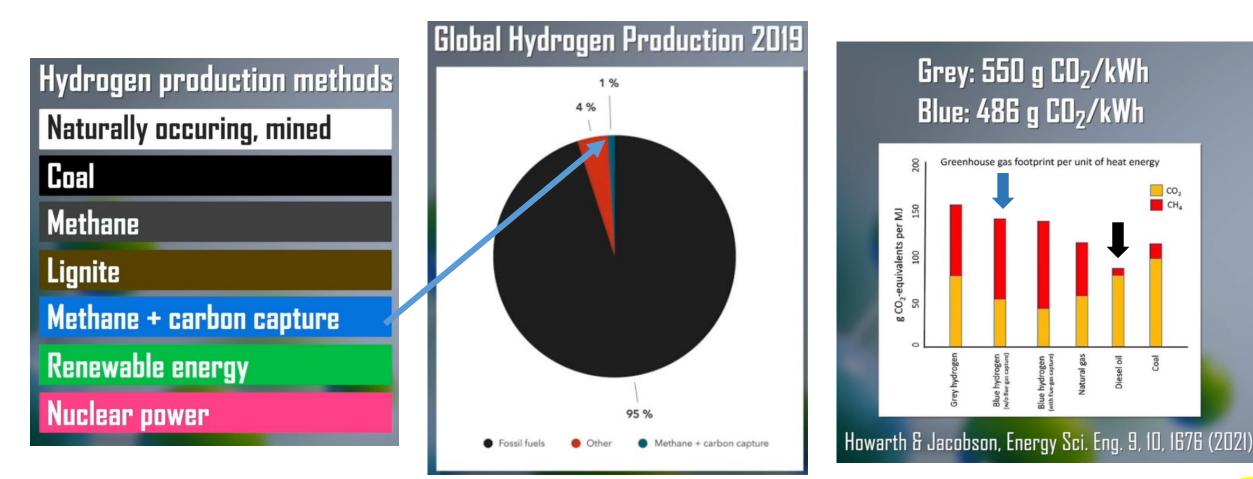

35%

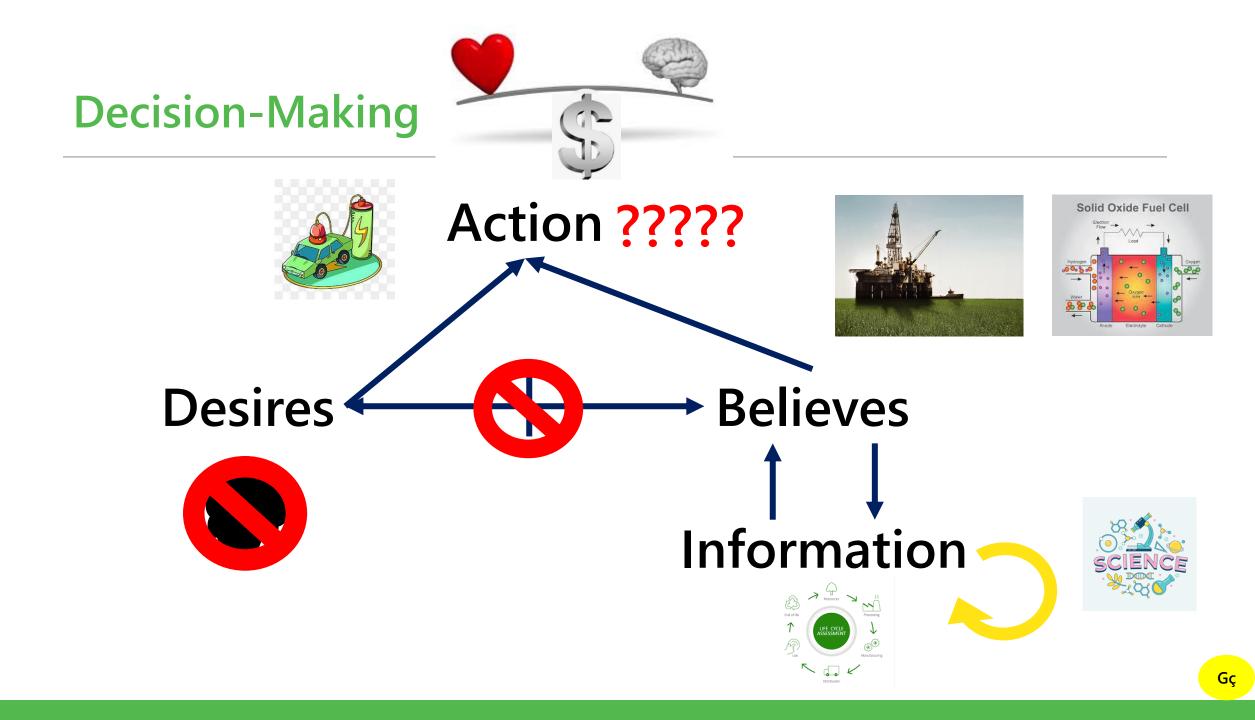

The Future....Eletric Cars in 5 Years (from 2016)....

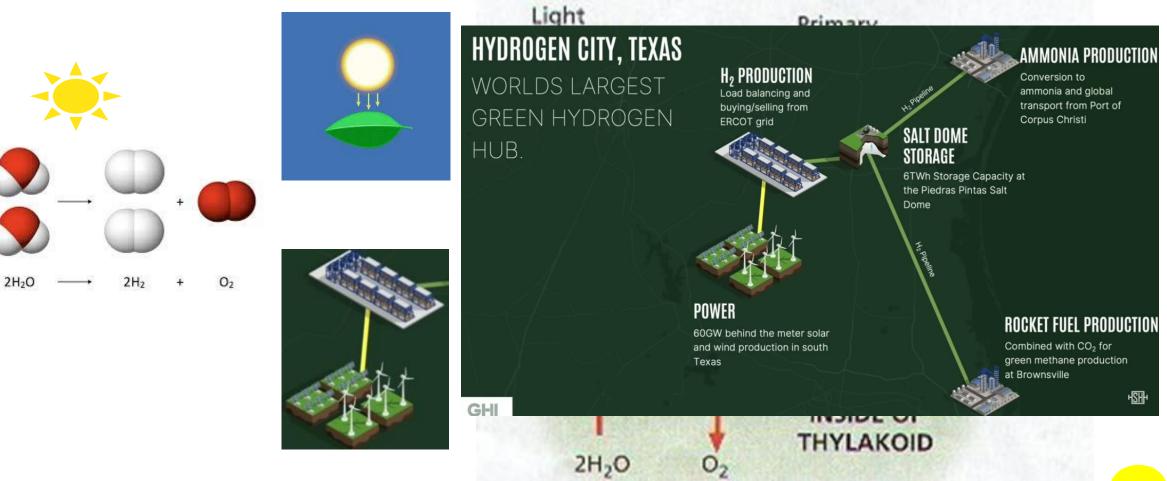
Countries 'Classification

Flashlight on PassCar/LDV Regional Trends						
Categories/Regions	😴 Europe 🗸 🗸	China -	US 🗸	Japan 🗸	Brazil -	ROW
			Political			
LCA	Tank to Well CO2	Sincere	dependent	Well to Wheel	Well to Wheel	
		BEV and				
Electification	Push to BEV	HEV	BEV, H2, HEV	Most effective	Fashion	
		H2 and				
	ICE Sales stop in	Methanol	BEV with			
Tendency	2035	ICE	boundaries	Most effective	Flex and HEV	
	CO2 neutral fuel -	-				
Backdoor	X and Biofuel	No need	No need	Most effective	Biofuel	
			Inflation			
Consequences of		Jobs	Reduction			Energy Supply,
electrification	Jobs destruction	creation	Act	Energy Supply	Lobbies	Price, Infrastructure
			Opportunisti			None - Lobby
Electrification Phylosophy	Dogmatic	Pragmatic	с	Fact Based	Unnecessary	dependent

Antithesis 1 - Metals



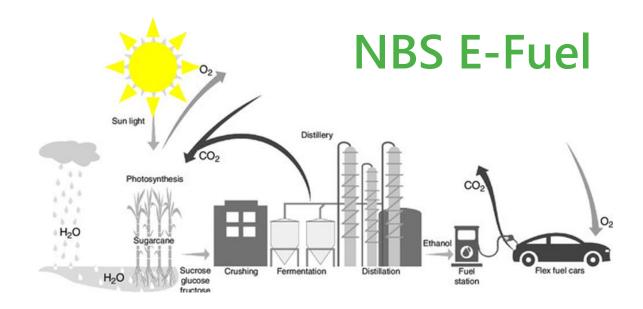




The Strange Rainbow of Hydrogen

(Photo)Synthesis

Reality Check

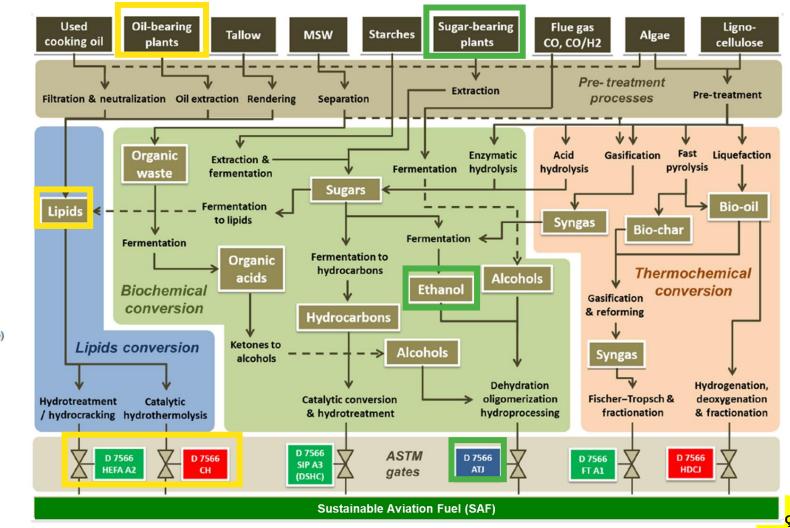


Exclusive: EU drafts plan to allow e-fuel combustion engine cars

By Markus Wacket

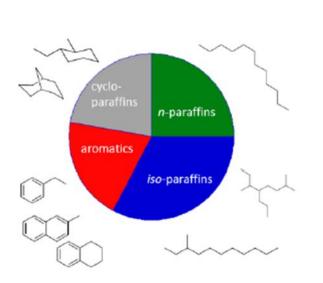
BERLIN/BRUSSELS, March 21 (Reuters) - The European Commission has drafted a plan to allow sales of new cars with internal combustion engines after 2035 <u>if they run only</u> <u>on climate neutral e-fuels</u>,

So What?

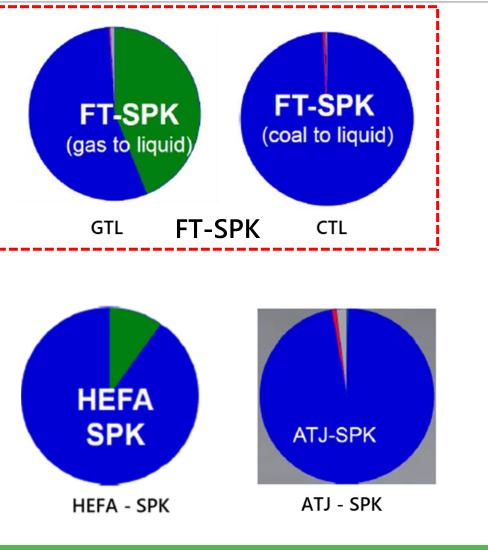


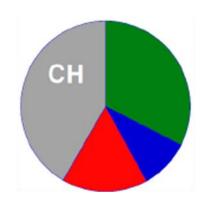
SAF	Bunker Fuel	Green Diesel	Light
HEFA	Methanol	HVO	Ethanol
ATJ	Ammonia	Biodiesel	Ethanol
		DME	Ethanol
		Methane	•••••

Gç


SAF – *Sustainable Aviation Fuel* (min 80% less CO2)

let fuel specifications ASTM 1655-15d Jet A-1 specification Criteria Explanation 38* Flash The temperature point at which the fuel minimum ignitos in the engine Ideal carbon length C8-C16 · Paraffins (70-85%) (iso, normal, and cyclic, provide Btu content) n-paraffins Aromatics (less than 25%) (poor combustion; some) matics needed to ensure seal swell) o paraffins Olefins (<1%) (gum formation) S, N, O containing (limited allowance) -ractions vary Sulphur The amount of 0.30 content sulphur in the fuel (parts per million) Density How heavy the fuel 775-840 is per litre (kg/m²) SENAI José Luis Gonçalves de Almeida




Adapted from: L.A.B. Cortez, F.E.B. Nigro, A.M. Nassar, H. Cantarella, L.A. H. Nogueira, M.A.F.D. Moraes, et al., Roadmap for Sustainable Aviation Biofuels for Brazil, Blucher, São Paulo, 2014, 272 p

Aromatic Issue

Typical composition of Jet-A1

Catalytic Hidrothermolysis - CH

New elastomer seals. The properties of fluorocarbon and fluorosilicon rubbers are far less sensitive to fuel composition changes than nitrile rubber. However, is that all existing aircraft fuel systems would have to be suitably upgraded prior to introduction of low-aromatic fuel blends.

Different Internationally Annroyed Process Through Which SAF C

SAF Approved Process

CONTRACTOR OF CO

Pathways and process	Feedstock options	Producers using the pathway	Pratt & Whitney and Embraer Compl approval	ete 100% SAF Flight Testing of GTF-powered E195-1 Currerit blending limit
Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK)	Biomass (forestry residues, grasses, municipal solid waste)		2009	Up to 50%
Hydroprocessed Esters and Fatty Acids (HEFA-SPK)	Algae, jatropha, camelina	Alt Air	2011	Up to 50%
Hydroprocessed Fermented Sugars to Synthetic Isoparaffins (HFS-SIP)	Microbial conversion of sugars to hydrocarbon	Amyris	2014	Up to 10%
FT-SPK with aromatics (FT-SPK/A)	Renewable biomass such as municipal solid wastes and forestry residues, wood and energy crops		2015	Up to 50%
Alcohol-to-Jet Synthetic Paraffinic Kerosene (ATJ-SPK) (Isobutanol)	Agricultural waste products (stover, grasses, forestry slash, crop straws)	Gevo	2016	Up to 30%
Alcohol-to-Jet Synthetic Paraffinic Kerosene (ATJ-SPK) (Ethanol)	Agricultural waste products (stover, grasses, forestry slash, crop straws)	LanzaTech	2018	Up to 50%
Catalytic hydrothermolysis synthetic jet fuel (CHJ)	othermolysis synthetic jet fuel Waste oils, alga oils, soybean oil, jatropha oil, camelina oil, carinata oil and tung oil)		2020	Up to 50%
High Hydrogen Content Synthetic Paraffinic Kerosene (HHC-SPK)	Biologically derived hydrocarbons such as algae	IHI World	2020	Up to 10%

Some Figures and Believes.....

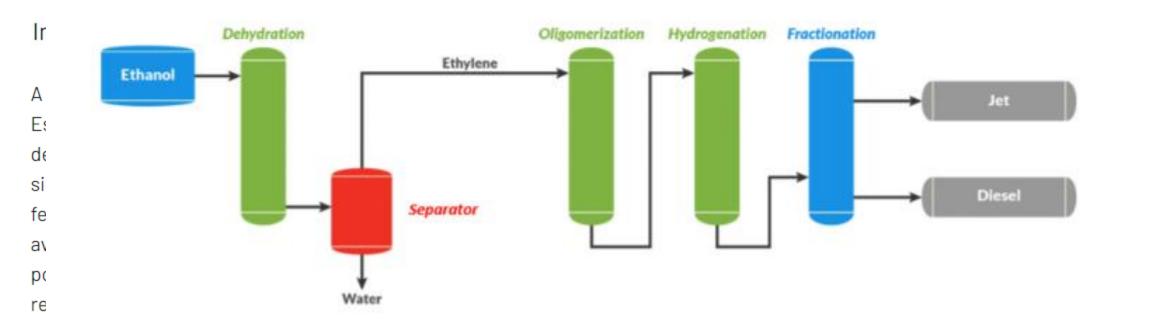
- <u>Market Perspective</u>: Air Bus reported that there are approximately <u>15.750 aircraft in the world (2022)</u>, and it is projected to reach <u>32.000 by 2028</u>;
- <u>Price Challenge</u>: Nowadays the *fuel consumption is around* <u>3-4 liters/(passenger. 100km)</u>, which makes fuel the 1°cost for an airline (30% of total costs);
- Safety and Entrance Barrier: To be approved by international standards (ASTM D4054 Qualification Procedure);
 - ASTM qualification *is a long and costly process*;
 - It requires a large quantity of jet fuel, from about 38 to 380 m³, several years, e.g. 2 to more than 5 years, with a cost that can overpass US\$10 million.
 - The construction, and operation for a few years, of a *big size pilot plant* or *demo plant*, to demonstrate the process and to be able to scale it up, with *costs typically in the range of US\$ 100 to a few hundred millions*.
- The SAF cost is not competitive compared to petroleum-based Jet fuel. <u>SAF</u> is 2-2,5 times more expensive than fossil Jet fuel; (WHERE AND WHY?)

Biomass Price is the Key (obviously)

Sugarcane

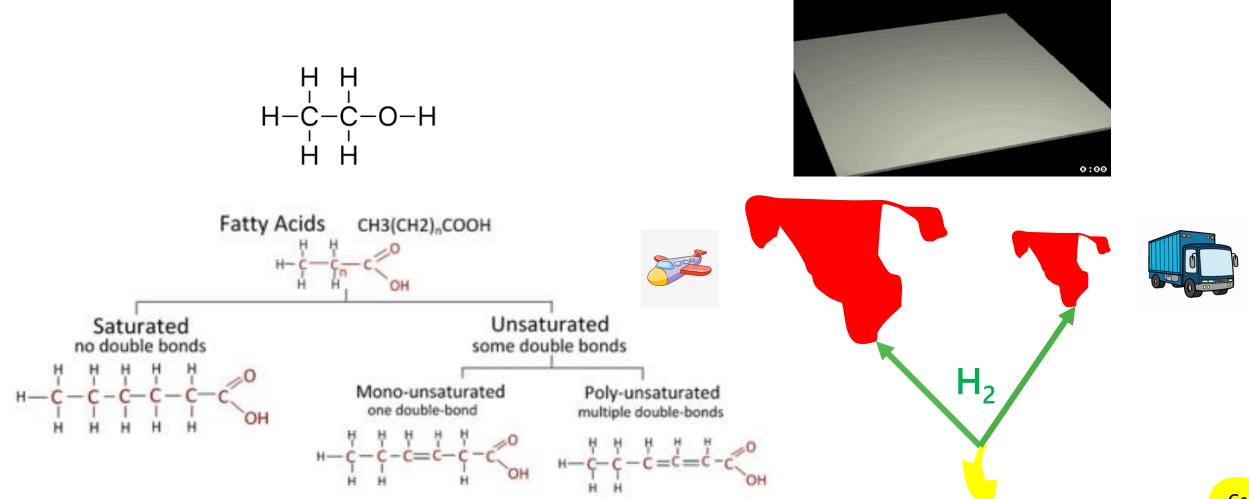
Energy-cane I

Energy-cane II


Raizen, Shell and LanzaJet

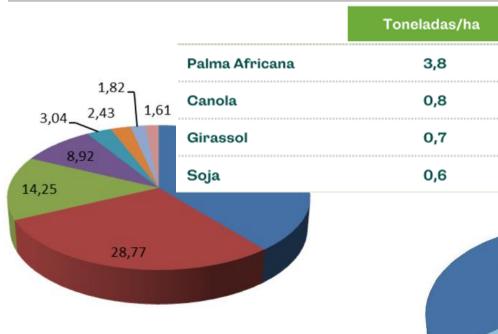
How it Works

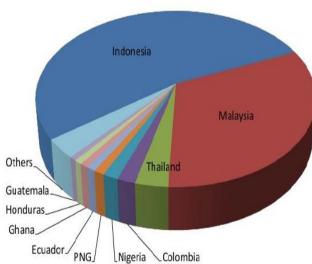
He


S

S

tic nic ay 66 ith TJ ble cal ial


The Beauty of the (Bio)Oil



The Biooil Issue

Oil Palm (CPO PKO)

Soybean

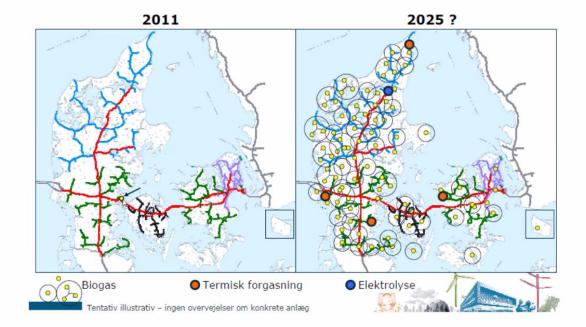
Brazilian Palm Option

Elaeis guineensis

Acrocomia aculeata

2000mm

1000mm


Massive Natural Occurrence

Biogas

AALBORG UNIVERSITY ALBORG ESDIERG COPENHAGEN

Shell conclui aquisição de maior produtor de biometano da Europa

Petroleira adquiriu 100% das ações da Nature Energy Biogas; empresa possui 14 usinas em operação e um pipeline de cerca de 30 novos projetos de fábricas na Europa e na América do Norte

epbr — 27 de fevereiro de 2023 Em Biocombustíveis, Internacional, Mercado de gás, Transição energética

38

Utilizando resíduos agrícolas, industriais e domésticos, a Nature Energy possui 14 usinas em operação (Foto: Divulgação/Nature Energy)

A Cane for the Semiarid

Ethanol Production Potential

Journal of Cleaner Production 261 (2020) 121283

Journal of Cleaner Production

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jclepro

Agave: A promising feedstock for biofuels in the water-energy-foodenvironment (WEFE) nexus

Meio-norte

Sertão

Zona da Mata

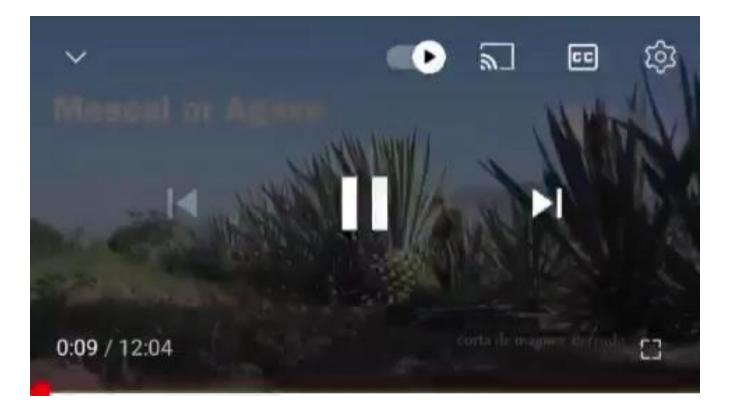
Xiaoyu Yan ^{a, b, *, 1}, Kendall R. Corbin ^{c, 1, 2}, Rachel A. Burton ^c, Daniel K.Y. Tan ^d

* Environment and Sustainability Institute, University of Exeter, UK

b College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK

⁶ ARC Centre of Excellence in Plant Cell Walls, University of Adelaide, Australia

^d The University of Sydney, Sydney Institute of Agriculture, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW, 2006, Australia


На	Litros
1	7.414
1.000	7.414.000
1.000.000	7.414.000.000
10.000.000	74.140.000.000

3,3 MM ha – 30 Bi Litros

4,5 MM ha – 30 Bi Litros

The Opportunity...

BRAVE Program

GE

What about NOW?

November, 2021

Sisal	2017	2018	2019	2020	2021 (jan/jun)	2021 (estimated)
Total Exported (US\$ 1,000)	75,973	84,538	85,321	77,999	39,764	79,528
Fiber	31,761	40,032	44,003	37,597	20,110	40,220
Manufactured	44,212	44,506	41,318	40,402	19,654	39,308
Total Exported (ton 1,000)	49,523	49,563	57,988	59,381	30,123	60,246
Fiber	23,224	29,539	36,149	34,432	17,001	34,002
Manufactured	26,299	20,024	21,839	24,949	13,122	26,244
Average (US\$/ton)	1,534	1,706	1,471	1,314	1,320	1,320
Fiber	1,368	1,355	1,217	1,092	1,183	1,183
Manufactured	1,681	2,223	1,892	1,619	1,498	1 498
Production (ton 1,000)	70,7	70,4	82,8	84,8		86,1

Biogas Obvious Opportunity

14 BOE/ha

	Fibra seca/há	Peso das Folhas	No de folhas	Pot. Biomet. M ³ /há.ano	Faturamento/há.ano	BOE
HB 11648	4.000	100.000	250.000	2294,67	R\$18.884,00	13,87355467


A bright Summary

The final Comment

E-Bunker Fuel

1,554,121 views | Jim Hagemann Snabe • Countdown Summit

WATCH

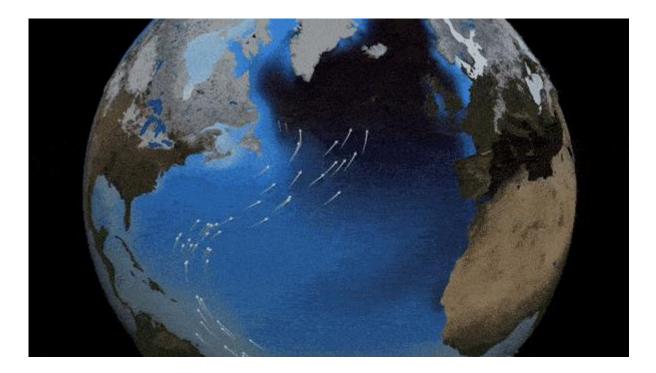
Dreams and details for a decarbonized future

"How much green electricity do we need to fuel all of our 750 vessels with green fuel?" Our fleet today consumes 10 million tonnes of bunker oil. To replace that with green fuel, we estimate that we need 220,000 gigawatt-hours of green electricity. That is the equivalent of 10 percent of the installed base of solar and wind in 2019. And Maersk is 20 percent of the cargo shipping industry. So, to fuel the cargo shipping industry alone would consume 50 percent of the entire installed base of green electricity. And that's just cargo shipping. In other words, we need a dramatic, exponential scale of installations of solar, of wind, of hydrogen production, of green fuel production, to solve this problem. We estimate that the total investment will be in the neighborhood of two trillion dollars, which, granted, is a lot of money. But actually, it is the equivalent of four years of capital expenditure in the oil and gas industry todav.

Baker's Account...

Transporte de Carga no Mundo segundo Maersk						
Item	Unidade	Número Maersk 🔄	Números Mundo 🔽			
Navios	n	750,00	3.750,00			
Consumo Bunker Fuel	t	10.000.000,00	50.000.000,00			
Eletricidade equivalente	Gwh	220.000,00	1.100.000,00			
Petróleo Equivalente	BOE	129.448.000,00	647.240.000,00			
Equiv. Energia Verde Instalada	%	10,00	50,00			
Investimento necessário	U\$ Trillion	0,60	3,00			
Investimento necessário	Anos de gasto de petróleo	0,80	4,00			

Biogás no Sertão 14 BOE/hectare 9.246.285,71 46.231.428,57


Sertão = 105 MM hectars

Compensating the Nature

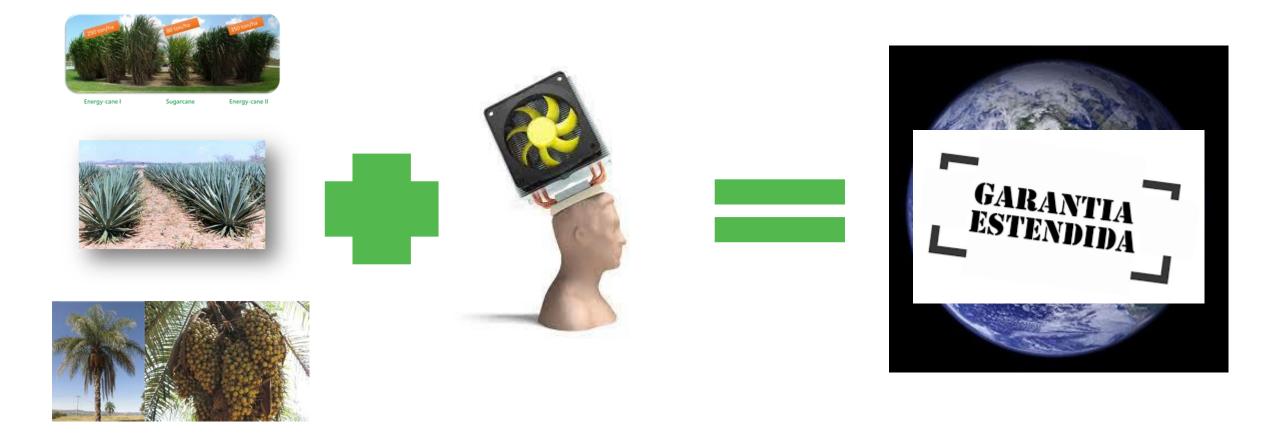
What's The Best Temperature for Civilization?

Atlas Pro Ø

Forbes

FORBES > FORBES MAGAZINE > FORBES ASIA

Biggest Invention: The Transistor, The Internet....Or The Air-Conditioner? (Hint) None Of The Above


Eamonn Fingleton Contributor ① A sharp eye on media bias, official propaganda, and globaloney.

Follow

Jul 5 2015 11:21am EDT

When Lee Kuan Yew, the late Singaporean patriarch, was asked to name the twentieth century's most consequential invention, he gave a characteristically counterintuitive answer. Not for him anything so obvious as television, antibiotics, the transistor, or the internet.

The Bioeconomy Equation

Light at the end of the CO₂ Tunnel

Caminho do CO₂ no setor sucroenergético – Potencial BECCS

bioFuel for Food

A Real Future

