

Development of heavy oil heterogeneous sandstone reservoirs

ANP Workshop 23-24 March 2017

Dr Stephen Goodyear EOR Deployment Lead

Outline

- Overview of Marmul viscous oilfield
- Journey to large scale polymer flooding
- Creating the future ASP pilot
- Moving polymer flooding offshore
- Conclusions

Marmul viscous oil field

Field Characteristics

• Depth 575 – 610m TVDss

• Area 136 km² (17*8km)

• Permeability 10 – 5000 mD

Bubble Point Press. 7600 kPa

• GOR 24m³/m³

Oil Viscosity
 90 mPas

• Initial Pressure 9300 kPa @ 610m

• Current Pressure 5000 – 8500 kPa

• Producing since 1980

Marmul production history

Outline

- Overview of Marmul viscous oilfield
- Journey to large scale polymer flooding
- Creating the future ASP pilot
- Moving polymer flooding offshore
- Conclusions

Oman polymer: Piloting

Polymer Pilots

(1986-1988 & 1989-1994)

Polymer Journey – integrated surface & subsurface

Water treatment and polymer plant - Specifications

- Mixing dirty water with the polymer gives high risk of reduced injectivity of the injectors
 - High risk of creating excessive fracture
- Water has to be cleaned to secondary specifications
 - 5 ppm Oil in Water, 2 ppm TSS
- Risk of fracture depend on
 - Cleanness of water
 - Formation property and height
 - Injection rate, viscosity
- Max fracture length 1/3rd of distance to nearest active producer
- Injected Polymer Viscosity is depending on the concentration
- Polymer plant is designed to inject polymer with viscosity 10 cP – 25 cP
- Viscosity can vary per well
- Rate can vary per well

Water Treatment Plant

Polymer Plant

Phase-1 project - Pattern implementation

- Phase 1 Polymer Injection (27 injectors)
 - 24 Vertical Injectors
 - 3 Horizontal Injectors
- Well spacing 600m inverted 9-spot pattern
- Initial Polymer Injection rate 250 500 m³/d per injector to max. 750 m³/d
- Expected recovery increase of 10% in targeted area

Surveillance Example - mPLT

Polymer injection in 2010 has increased the conformance.

Outline

- Overview of Marmul viscous oilfield
- Journey to large scale polymer flooding
- Creating the future ASP pilot
- Moving polymer flooding offshore
- Conclusions

Alkaline-Surfactant-Polymer (ASP) Flooding

During waterflooding residual oil is trapped due to:

- low water viscosity
- high water-oil interfacial tension

Residual Oil & Capillary Number

Under-optimum Low salinity

surfactant in water solubilises oil in micelles IFT $\sim 0.1 - 1 \text{ mN/m}$

Optimum salinity middle phase micro-emulsion

IFT $\sim 10^{-3} \, \text{mN/m}$

Over-optimum

High salinity surfactant in oil solubilises water in oil IFT ~ 0.1 – 1 mN/m

Marmul ASP Pilot - Road to operate phase

Core flooding 2007 - 2014

QA/QC of surfactant 2014

Facilities Construction 2014

RESTRICTED

Outline

- Overview of Marmul viscous oilfield
- Journey to large scale polymer flooding
- Creating the future ASP pilot
- Moving polymer flooding offshore
- Conclusions

Real estate: Space and weight

South of Oman

Plenty of space available:

- Storage and equipment unlimited
- Separation of O/W no constraints
- Maturation limited constraint
- Build as you go
- Dilution available
- Mitigations can be implemented
 - Expand O/W separation tank
 - Extra filtration

North Sea

Constraint by space and weight

- Equipment must be nimble
- Storage volume is constraint
- Logistics
- No space to implement mitigations
 - Potentially 3.5 x 2.4 m available for additional equipment

Infrastructure

South of Oman

- Wells are individually accessible
- Infill drilling easy and cheap
- Injector producer distance can be short
- Pilots are easy to implement

North Sea

- Subsea wells hard to assess
- Infill drilling is hard and expensive
- Injection producer distance is large
 - no pattern flood
- Pilots are difficult to implement
- Loosing a well is catastrophic

Injection/production

South of Oman

Injectors:

- One pump / one flowline per well
- individually well dosage
- Polymer on/off
- Wellhead sampling

Producers

- Segregated production
- Each well can be tested individually

North Sea

Injectors

- Combined pump system / 1 riser for 8-12 wells
- Chokes used to distribute flow
- Same concentration every well in riser
- Shear degradation through chokes

Producers

- Commingled production
- Well testing cumbersome

RESTRICTED

Copyright of Shell Upstream International

Reservoir surveillance

South of Oman

North Sea

Sampling per production riser

- Commingled production
- Limited individual well information

One PFO and 5 PLTs during field life

- Fracture growth?
- Containment?

4D seismic

- Good enough for surveillance
- Replace PFO

RESTRICTED

Injectivity/Productivity

South of Oman

North Sea

No injectivity issues Field A Productivity decline Field A

- Solvent treatments
 Poor injectivity Field B
 Injectivity issues Field C
- Remediation injectors with foamed acid breaker

Injection under fractured conditions

- Some horizontals (partially) matrix
 Same polymer injected in all wells
 Remediation
- Subsea well connect + stimulation vessel

Water treatment, PW sink and polymer disposal

South of Oman

- Dilution by other producers to reduce viscosity produced water
- High PWRI system uptime
- Fall-back PW is well disposal
- Additional filters for water treatment

North Sea

- Water treatment based on hydrocyclones
- No other fields to dilute
- No additional filtration
- 5% on-demand un-availability PWRI system
- 40 ton/year polymer discharge to sea, based on
 80 ppm returned polymer (500 ppm injected)
- Fall-back: shut in producers when PWRI is down

Key messages

- Large scale polymer flood deployed onshore Marmul viscous oil field
 - Good response from injection
 - Complex integrated surface and subsurface issues need to be addressed to create EOR system that works
- Pilot testing of ASP to establish additional value and recovery over polymer flooding
- Polymer EOR has potential for application offshore
 - Projects complex and require integrated approach and proper planning
 - Early identification and lifecycle thinking (e.g. injection water quality requirements, deck space and tie in points)
 - Mitigations needed from technology, e.g. shear resistant polymers
- Need to have the right commercial and fiscal environment to make it happen

Copyright of Shell Upstream International RESTRICTED 21

