

PANORAMA DA APLICAÇÃO DE MÉTODOS DE RECUPERAÇÃO MELHORADA NO BRASIL E NO MUNDO

Adalberto José Rosa Marcos Vitor Barbosa Machado GIA-E&P/EREE/ER

23-24/03/2017

ROTEIRO

1. Histórico de EOR na Petrobras:

- 1. Métodos térmicos;
- 2. Métodos químicos;
- 3. Métodos miscíveis;
- 4. Métodos microbiológicos.

2. Panorama mundial:

- 1. Projetos ativos e bem sucedidos por métodos;
- 2. Projetos ativos e bem sucedidos por países;
- 3. EOR offshore.

3. Desafios e conclusões.

Aumento do FR - Implantação de Técnicas de Recuperação Avançada (EOR) 1) Barreiras e Desafios para Implantação; 2) A importância da avaliação de EOR na etapa de desenvolvimento do campo; 3) Estudos de Casos Nacionais - Resultados e Lições Aprendidas; 4) Estudos de Casos Internacionais - Resultados e Lições Aprendidas.

1. HISTÓRICO DE EOR NA PETROBRAS

HISTÓRICO DE EOR NA PETROBRAS

Tecnologia	# Aplicações	Sucesso		
<u>Térmicos</u>				
Vapor	Em larga escala	Sim		
Combustão in-situ	2 pilotos	Não		
<u>Químicos</u>				
Polímero	4 pilotos	Não		
Controle de produção de água	Em larga escala	Sim		
<u>Miscíveis</u>				
CO ₂	3 pilotos	Em 1 dos pilotos		
WAG	Em larga escala no pré-sal da BS	Em andamento		
<u>Microbiológicos</u>				
MEOR	10 poços e 1 full field	Em 7/10 poços: Sim full field: Não		
<u>Outros</u>				
Aquecimento Eletromagnético	3 pilotos	Não		
Injeção de água pulsada	full field	Sim		


MÉTODOS TÉRMICOS

Importância: desenvolvimento de reservatório continentais de óleos viscosos (μ_o > 500 cP).

INJEÇÃO DE VAPOR



- Projetos de injeção de vapor são responsáveis por praticamente toda a produção por EOR no Brasil;
- Projetos de injeção cíclica de vapor foram implantados com sucesso já no final dos anos 70. Atualmente, a injeção de vapor é amplamente aplicada em campos *onshore* de óleos viscosos da Petrobras;
- Campos já submetidos à injeção de vapor:
 - o BA: Fz. Alvorada, D. João Terra, Miranga;
 - o SE: Carmópolis, Siririzinho, Castanhal;
 - o RN: Alto do Rodrigues, Estreito, Fz. Belém, Fz. Poçinho, Monte Alegre;
 - o ES: Fz. Alegre, Rio Preto Oeste, Inhambú e Cancã.

Injeção contínua de vapor em Estreito e 📴 PETROBRAS

Alto do Rodrigues (RN)

COMBUSTÃO IN-SITU

2 PILOTOS ONSHORE:

- Buracica (BA) → 1979-1986 (4 injetores)
 - frente de combustão não foi estabelecida devido às características do óleo;
 - ganho de óleo devido à repressurização do reservatório;
 - produção de areia e corrosão nos poços e equipamentos de superfície;
 - breakthrough de O₂ causou interrupção do projeto por questões de segurança.

- Carmópolis (SE) → 1978-1991 (4 injetores)
 - geração e manutenção da frente de combustão bem sucedida;
 - resultados econômicos não foram atrativos devido à baixa recuperação adicional e aos elevados custos operacionais;
 - além disso, o resultado foi insatisfatório devido à perda do controle da frente de combustão (migração), pela alta heterogeneidade do reservatório;
 - muitos problemas operacionais tornaram o processo não econômico.

MÉTODOS QUÍMICOS

<u>Importância</u> [polímeros]: redução da produção de água por aumento de sua eficiência de varrido ou por diminuição de sua permeabilidade efetiva na vizinhança do poço.

INJEÇÃO DE POLÍMEROS

4 PILOTOS ONSHORE:

- Carmópolis (SE) → 1969 1972;
- Carmópolis (SE) → 1997-2003;
- Buracica (BA) → 1999-2003;
- Canto do Amaro (RN) → 2001-2004.

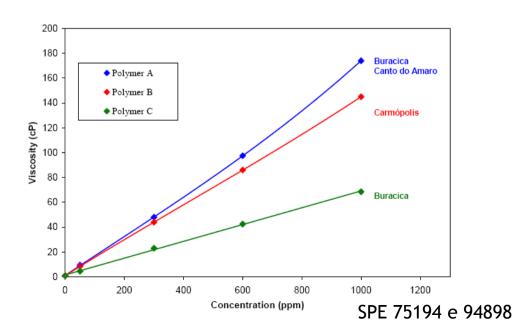
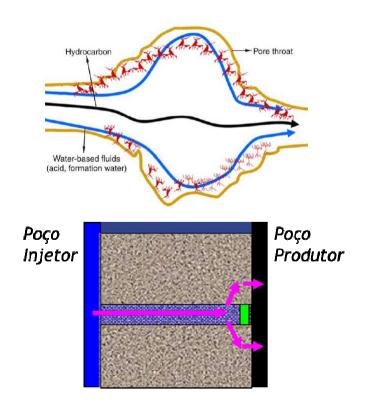
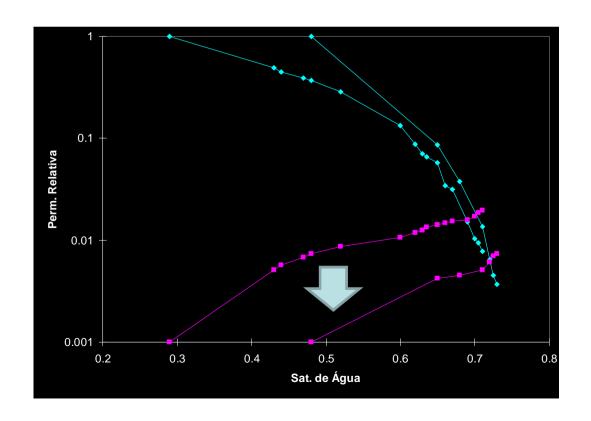


Table 1: Parameters for CP, BA and CAM reservoirs.

PARAMETER	REFERENCE	СР	ВА	CAM-1	CAM-2
Temperature (°C)	< 80°	50°	60°	55°	56°
Salinity (ppm)	< 10000	30000	33000	500	500
Oil viscosity (cP)	< 100	50	10.5	20	7
°API	-	22	34	28	33.8
Oil saturation (%)	> 20	32.2	24	23	39
Permeability (mD)	> 100	100	300	204/38	250
Mobility ratio	> 1.0	21	3.5	4	5.5
Rock	Sand	Sand	Sand	Sand	Sand
Heterogeneity	Low	high	High	Low	Medium
Clay content (%)	Low	High	10 a 20	Low	High
Gas cap	Absent	Absent	Absent	Absent	Absent
Water drive	Absent	Absent	Absent	Absent	Absent
Natural fracture	Absent	Absent	Absent	Absent	Absent

INJEÇÃO DE POLÍMEROS


- Carmópolis $\rightarrow \Delta FR = 1.3\%$
- Buracica → ∆FR = 2.8%
- Canto do Amaro $\rightarrow \Delta FR = 3.2\%$
- Considerado muito baixo;
- Não pôde ser totalmente atribuído ao polímero.


Motivos:

- Reservatórios com alta saturação de água;
- Baixas vazões de injeção → bancos muito pequenos (0.1% PV) → Tempos de resposta demorados (3-5 anos);
- Heterogeneidades;
- Pilotos não confinados;
- Recompletações e alterações na injeção/produção durante o piloto.

- Modificadores de permeabilidade relativa (Selepol®);
- São aplicados no poço produtor, preferencialmente em poços verticais;
- Os produtos adsorvem na rocha e reduzem, seletivamente, a krw.

• RNCE (1994 - 1996) - Fazenda Pocinho

Well	ΔΝρ	Δ W p	Reservoir Block	Observation
	(Mm ³)	(Mm³)	DIUCK	
FP-5	1.400	8.560	main	
PL-52s	0.980	1.030	PL	
FP-72	1.267	3.956	main	**
FP-73	1.616	2.024	main	*· · · · · · · · · · · · · · · · · · ·
FP-114	1.780	1.755	main	
FP-128i	0.914	4.098	main	
FP-135	0.153	6.245	main	
FP-136	1.588	12.208	main	
FP-153i	0.985	0.994	2	
FP-181	2.775	2.775	main	
PL-38	-	-	PL	cementation failure
PL-55	-	-	PL	unfavorable location
FP-66	_	-	1	cementation failure
FP-112	-	•	3	perforation misplacement
FP-148		-	main	under evaluation
FP-161	-	-	main	bad results
FP-167	-	-	main	under evaluation
SUM	13.458	43.645		

Table 5: Cumulative additional oil production and water abatement for the field treatments.

SPE 39037 (1997)

- ✓ Índice de sucesso: 60-70% (>Np e <Wp);
- ✓ BSW: Redução de 10-20 pontos percentuais;
- ✓ Ganho de óleo associado ao tratamento de 5 a 6 vezes o custo médio da operação;
- ✓ Maior parte dos insucessos → reservatórios com pouco óleo remanescente.

- BA (1996 a 2000) 69 tratamentos em 14 campos;
- Índice de sucesso técnico = 57% e econômico = 54%;
- Dom João (\triangle BSW = 3 a 13%; \triangle Qo total = 58,3 m³/d).

APLICAÇÕES OFFSHORE

- 2003 6 tratamentos na Bacia de Campos (Namorado, Cherne e Bagre):
 - o Bagre: inconclusivo (poucos testes disponíveis para avaliação);
 - <u>Namorado</u>: sucesso, nenhum dos 3 poços apresentou queda de vazão bruta. Redução média de produção de água de 37%;
 - o Cherne (1 poço): sucesso;

Poço	ΔNp %	ΔWp %
NA-24	77,0	-10,2
NA-25	22,4	-54,6
Total	18,3	-36,9

- 2013 1 tratamento na Bacia de Campos (Marlim):
 - o Insucesso devido à inadequação do produto fornecido.

MÉTODOS MISCÍVEIS

<u>Importância</u>: aumento da eficiência de deslocamento do óleo, através da redução de sua saturação residual, e aumento da eficiência de varrido do reservatório em função da melhoria na mobilidade do óleo.

INJEÇÃO DE CO₂

ARAÇÁS (BA, 1987):

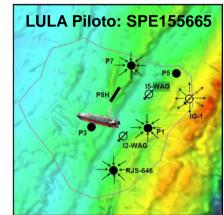
- Reservatório foi repressurizado até a pressão mínima de miscibilidade;
- Resultados obtidos: (i) banco miscível foi observado, (ii) produção incremental observada e (iii) sem problemas de injetividade;
- O projeto foi interrompido devido a: (i) problemas no fornecimento de ${\rm CO_2}$ e (ii) queda no preço do óleo;

BURACICA (BA, 1991):

- Injeção imiscível;
- Implantação bem sucedida;
- Sucesso técnico e econômico;
- Baixo consumo de CO₂.

RIO POJUCA (BA, 1999):

- CO₂ miscível;
- Muitos problemas:
 - o malhas não confinadas (5 spot invertido) → perda de CO₂;
 - o descontinuidade no fornecimento de CO₂.

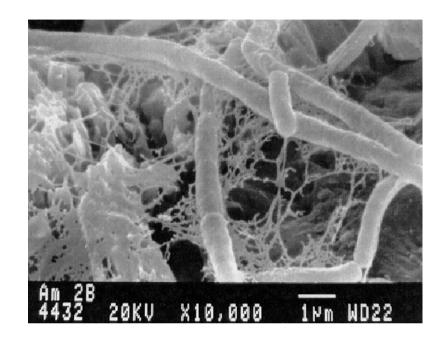

WAG

• Pólo Pré-Sal da Bacia de Santos - primeiro uso do método de injeção alternada de água e gás

(HC+CO₂) em água ultra-profunda (2.200 m):

- o LULA Piloto (2 poços);
- LULA Nordeste (1 poço);
- LULA Iracema Norte (1 poço);
- LULA Iracema Sul (3 poços);
- Sapinhoá Norte (1 poço).

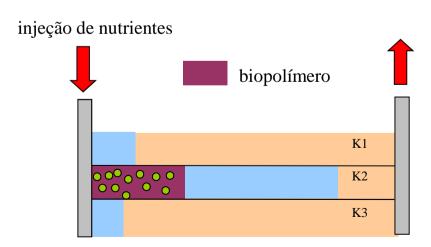
- Aproveitamento para WAG do CO₂ presente como contaminante no fluido do reservatório;
- **Resultados laboratoriais** e **modelagem numérica** mostram o potencial do método para aumento da recuperação nos reservatórios do pré-sal;
- **Teste em campo** em 2 poços do Piloto de Lula tem mostrado resultado satisfatório em termos operacionais e não se detectou perda da injetividade na troca de água para gás (OTC 25712);
- Avaliação da eficiência do WAG como mecanismo de recuperação será possível futuramente, após a irrupção das fases injetadas, apoiada por testes de laboratório e simulação de escoamento. Os resultados apoiaram a decisão sobre o emprego do WAG como método de recuperação do campo, visto que o sistema tem flexibilidade para sua aplicação (OTC 25712).

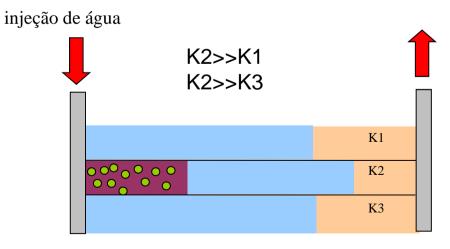


MÉTODOS MICROBIOLÓGICOS

<u>Importância</u>: melhoria da eficiência de varrido e/ou de deslocamento.

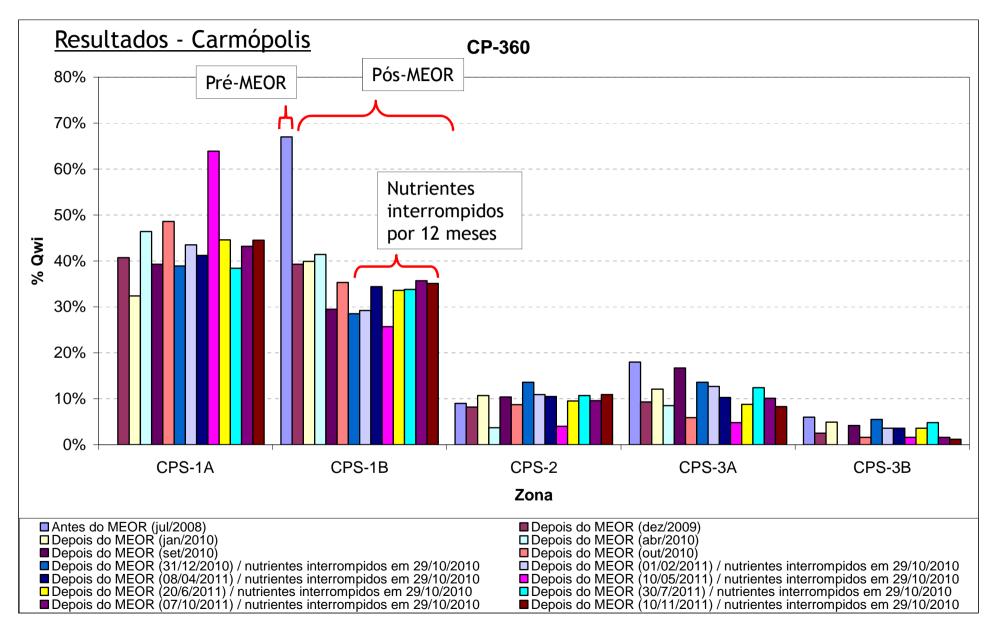
MEOR



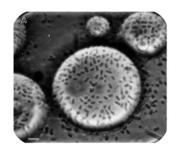

Objetivo: Bloquear canais de alta permeabilidade por geração de biomassa e biopolímeros *in-situ*;

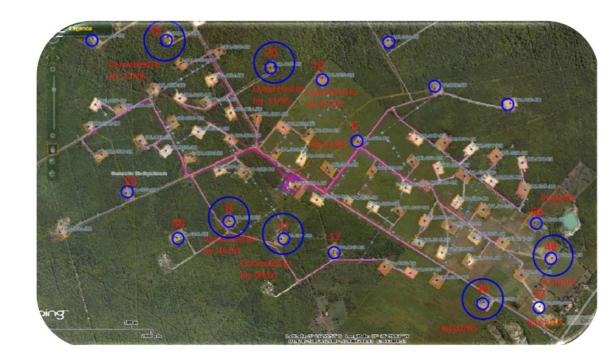
Metodologia: Dosagem de nutrientes e aceptor de elétrons na água de injeção;

Aplicação: 10 poços de Carmópolis (SE, 2010);

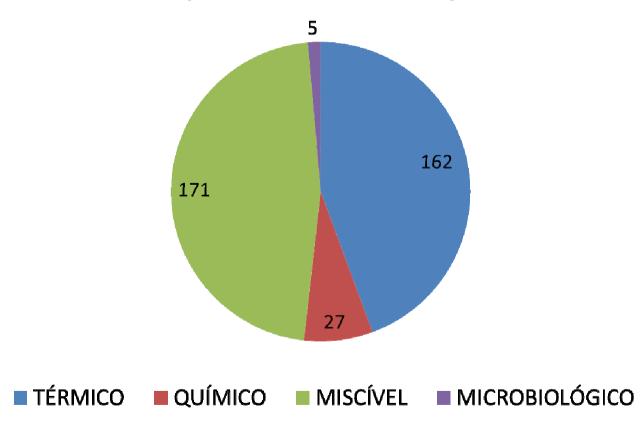

Resultados: 70% dos poços apresentaram melhorias no perfil de injetividade.

MEOR



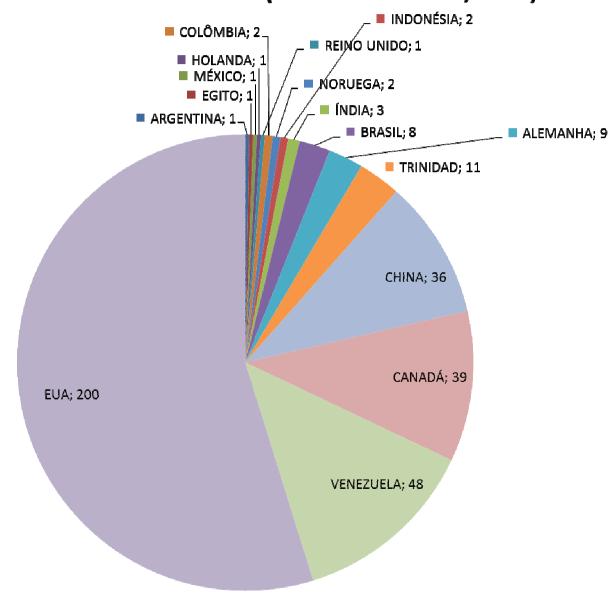

MEOR / AERO (Activated Environment for Recovery of Oil) PETROBRAS

- A aplicação no campo de Baixa do Algodão (BAL, RNCE) teve início em março/2015 e se encerrou em marco/2016.
- O método consiste na adição de nutrientes e pequenos teores de oxigênio na água de injeção, estimulando a produção de biosurfactantes e biomassa por microrganismos já existentes no reservatório.
- A conclusão é que o método MEOR, no campo de BAL, não teve sucesso, pois, na avaliação dos resultados do campo como um todo, não foi observado ganho de produção de óleo associado ao projeto.



2. PANORAMA MUNDIAL

PANORAMA MUNDIAL


PROJETOS ATIVOS E BEM SUCEDIDOS DE EOR NO MUNDO (Oil & Gas Journal, 2016)

PANORAMA MUNDIAL

PROJETOS ATIVOS POR PAÍSES (Oil & Gas Journal, 2016)

PANORAMA MUNDIAL DO EOR OFFSHORE PETROBRAS

Método	Início EOR	Campo	Região	Escala	LDA (m)	Prof. Res. (m)	Temp. Res (°C)	Dens. (°API)	Visc. do óleo (cP)
Injeção de GN	1975	Ekofisk ¹	MN	Campo	70 - 80	2900-3030	131	36	0.17
Injeção de GN	1977	Beryl ¹	MN	Campo	110 - 120	3200		37	
Injeção de GN	1979	Satfjord ¹	MN	Campo	145	2575	99	39	0.29
Injeção de GN	1981	Brent ¹	MN	Campo	140	2744	103	34	0.25
Injeção de GN	1983	South Pass Bl. 89 ²	GM	Campo	131	3048	82	38	0.4-0.6
Injeção de GN	1986	Ula²	MN	Campo	70	3450	121	41	0,3
Injeção de GN	1989	South Pass Bl. 89 ²	GM	Campo	131	3353	74	38	1
Injeção de GN	1999	Alwyn North ¹	MN	Campo	130	3110	113	41	0.3
Injeção de GN	1999	Smorbukk South ¹	MN	Campo	240 - 300	3800	165		
WAG (GN)	1994	Snorre (SnA) 1	MN	Campo	350	2300	90	35	0.4-0.9
WAG (GN)	1994	South Brae ¹	MN	Campo	112		123	33-37	0.3
WAG (GN)	1998	Ula ^{3,4}	MN	Campo	70	3350-3800	146	38-41	
WAG (GN)	2002	Magnus ¹	MN	Campo	186	2709	116	39	
Injeção de CO ₂	2011	Rang Dong⁵	Vietnan	Piloto	60			36	
WAG(GN+CO2)	2011	Lula ^{6,7,8}	BS	Piloto	1800- 2400	5500-6000	60-70	28-30	~1
SWAG	1999	Siri ¹	MN	Campo	58	2070			
FAWAG	1997	Snorre (CFB) 1	MN	Campo	300 - 350	2300	90	35	0.4-0.9
FAWAG	1999	Snorre (WFB) 1	MN	Campo	300 - 350	2300	90	35	0.4-0.9

Regiões: MN- Mar do Norte; GM- Golfo do México; BS- Bacia de Santos; BB- Bohai Bay(China); Alaska(EUA).

Fontes: 1- AWAN et al., 2006. 2- KOOTTUNGAL, 2014. 3- BRODIE et al, 2012. 4- THOMAS et al., 2008. 5- HA et al., 2012. 6- PIZARRO e BRANCO, 2012. 7- FRAGA et al., 2014. 8- SALOMÃO et al., 2015. 9- EMEGWALU, 2010. 10- DOVAN et al., 1990. 11- HAN et al., 2006. 12- KANG et al., 2011. 13- LU et al., 2015. 14-MOREAL et al., 2015. 15- SELLE et al., 2013. 16- POULSEN, 2010. 17- JONES et al., 2015. 18- ZHANG e KANG, 2013. 19-SECCOMBE et al., 2010. 20- YONGTAO et al., 2011. Fonte: Compilação de Ferreira (2016).

PANORAMA MUNDIAL DO EOR OFFSHORE

Método	Início EOR	Campo	Região	Escala	LDA (m)	Prof. Res. (m)	Temp. Res (°C)	Dens. (°API)	Visc. do óleo (cP)
Microbiológico	2001	Norne ^{1,9}	MN	Piloto	380	2500-2700	98	33	0,6-0,7
Polímero	1986	Dos Cuadras ¹⁰	GM	Campo	58	150-1220	49-60	25	
Polímero	2003	SZ36-1 ¹¹	ВВ	Piloto	10 - 30	1300-1600	65	11-19	13-380
Polímero	2006	PF-B ¹²	BB	Campo	10 -30		50-70	17-22	10-20
Polímero	2007	PF-C ¹²	ВВ	Campo	10 - 30		50-70	17-22	10-30
Polímero	2007	JZ 9-3 ¹³	ВВ	Campo	7-11	1800-2400	57	17-26	17,1
Polímero	2008	PF-A ¹²	BB	Campo	10 - 30		50-70	17-22	30-450
Polímero	2009	Dalia ¹⁴	Angola	Piloto	1300	2000-2200	50	12-23	1-10
Polímero	2010	Heidrun ¹⁵	MN	Piloto	350	2650	85	26	2-4
Polímero	2010	Captain ^{16,17}	MN	Piloto	104	914	32	19-21	49-200
SP	2010	JZ 9-3 ¹³	BB	Campo	7-11	1800-2400	57	17-26	17,1
SP	2010	PF-C ¹⁸	BB	Piloto	10 - 30		50-70	17-22	10-30
LoSal	2008	Endicott ¹⁹	Alaska	Piloto	0,5-4	3048	130	23	
Vapor	2009	(típico) ²⁰	ВВ	Piloto	10 - 30	940-1070	56		> 1000

Regiões: MN- Mar do Norte; GM- Golfo do México; BS- Bacia de Santos; BB- Bohai Bay(China); Alaska(EUA).

Fontes: 1- AWAN *et al.*, 2006. 2- KOOTTUNGAL, 2014. 3- BRODIE *et al.*, 2012. 4- THOMAS *et al.*, 2008. 5- HA *et al.*, 2012. 6- PIZARRO e BRANCO, 2012. 7- FRAGA *et al.*, 2014. 8- SALOMÃO *et al.*, 2015. 9- EMEGWALU, 2010. 10- DOVAN *et al.*, 1990. 11- HAN *et al.*, 2006. 12- KANG *et al.*, 2011. 13- LU *et al.*, 2015. 14-MOREAL *et al.*, 2015. 15- SELLE *et al.*, 2013. 16- POULSEN, 2010. 17- JONES *et al.*, 2015. 18- ZHANG e KANG, 2013. 19-SECCOMBE *et al.*, 2010. 20- YONGTAO *et al.*, 2011.

3. DESAFIOS E CONCLUSÕES

DESAFIOS E CONCLUSÕES

- Concluímos que as principais experiências de EOR da PETROBRAS estão relacionadas com a aplicações de métodos térmicos e miscíveis, fato também constatado quando se analisam experiências de outras operadoras no mundo;
- Dentre os principais desafios para implantação de métodos de EOR, pode-se citar:
 - o disponibilidade de gás para viabilizar métodos miscíveis;
 - o grande parte dos reservatórios têm boa resposta à injeção de água, não justificando investimentos para um incremento pequeno de produção advindo de EOR. Além disso, muitos poços desses reservatórios produzem, atualmente, com alto corte de água, o que atrasa o retorno de ganho adicional de óleo advindo de métodos de EOR;
 - grande espaçamento entre poços em cenário offshore que gera grandes tempos de retorno da injeção de produtos químicos, além da necessidade de volumes maiores, o que prejudica a viabilidade econômica de projetos de EOR;
 - existência de reservatórios sem viabilidade para injeção de água (baixa permeabilidade/espessura, óleo extra viscoso etc), constituindo desafios ainda maiores, por exemplo, quanto à injetividade, para métodos de EOR, sobretudo quando se considera a existência de reservatórios com alta temperatura, salinidade e limites de pressão de injeção;

DESAFIOS E CONCLUSÕES

- o falta de experiência da indústria do petróleo na aplicação de métodos de EOR em ambiente *offshore*, sobretudo em lâmina d'água profunda, indicando ser um desafio sua implantação. Mesmo em ambiente *onshore*, métodos de EOR, como químicos e microbiológicos, ainda não são largamente aplicados no mundo;
- o sistemas de produção implantados com limitação de espaço e capacidade de processamento de fluidos e de carga para instalação de equipamentos adicionais necessários para EOR, sendo necessárias muitas obras para adaptações ou para instalação de novos sistemas, além de questões não solucionadas em relação à incompatibilidade entre produtos de EOR produzidos e os utilizados na planta de processamento;
- a utilização de água do mar, captada para injeção em ambiente offshore, com elevada salinidade reduz muito a eficiência dos produtos químicos utilizados em projetos de EOR;
- o por fim, nos casos onde há viabilidade técnica para implementação de métodos de EOR, a principal barreira é a falta de atratividade econômica devido aos altos custos envolvidos, tanto devido às instalações e equipamentos necessários quanto aos produtos e sua logística de fornecimento.