Enhanced Oil Recovery North Sea Case Studies

amec foster wheeler

ANP Seminar: Topic 2, 23rd March 2017

Gerry Coghlan (Ingen-Ideas, an Amec Foster Wheeler company)

Framework

- 'North Sea' is a catch-all label covering North Sea, West of Shetland and Norwegian Sea
- EOR projects reviewed were either on UK Continental Shelf, UKCS, or on Norwegian Continental Shelf, NCS
- Both producing regions are considered mature, but also have areas in which significant new developments are occurring:
 - ▶ for UKCS West of Shetland
 - ▶ for NCS Norwegian Sea
- UKCS oilfields are predominantly sandstones
- NCS fields are mostly sandstones but a significant chalk play exists

- Water depth ca.100-400m, deepens as move North
- Initial large fields developed with fixed platforms
- FPSO more common in deeper water and away from reduced shelter

North Sea - Potted History

- Geological ages of developed oil reservoirs, in declining order of historic recovery, were
 - For UKCS: Jurassic, Tertiary, Cretaceous
 - ► For NCS, Jurassic, Cretaceous (chalk) and Tertiary
- Waterflooding has featured in the majority of oil field developments
- Initial, large field developments typically preceded gas evacuation
- Gas injection (GI) adopted as
 - Large volumes of gas
 - structural relief
 - rock quality
 - a need to replace reservoir voidage (production)
- Oilfields that used GI include Brent, Beryl, Fulmar (all UKCS) and Ekofisk, Statfjord, Gullfaks, Oseberg, Snorre (all NCS)

North Sea - Gas Market Effect

- Since early 1990's GI has not featured in initial field developments in UKCS
 - ► UK switched to natural gas for power generation and domestic consumption and associated gas was increasingly diverted there
 - ▶ UK is gas deficient and imports over 50% of its requirements
- NCS saw more gradual build-out of pipeline and market
 - Norway internal markets are small and dispersed, fully supplied by hydroelectric
- For NCS, GI continues to feature in some new field developments dependent on gas export options, area gas sales agreements etc.
 - ▶ Potential for CO₂ as part of Carbon Capture and Storage (CCS)

amec foster wheeler

North Sea - Recovery Factor Snapshot

- Both UKCS and NCS oilfields have enjoyed very high recovery factors
- High cost environment with limited, high-cost wells meant focus on:
 - Reservoir characterisation (3D seismic then 4D, geological modelling)
 - Reservoir management strategies
 - Well construction (extended reach drilling, smart wells, flow assurance)
- Favourable geology, light oil translated into good waterflood recovery and, where used, from gasflood
- Estimated ultimate recovery for UKCS and NCS oilfields 46%

North Sea - WAG Schemes

- Water Alternating Gas (WAG) is a hybrid scheme that combines water and gas flooding
- Features
 - ► A compartment/ fault-block is injected with water for a set volume typically then the injector is switched to gas injection for a set volume
 - Sequence performed multiple times to maximise incremental oil
 - Limits gas cost burden but changeover adds operational complexity
 - Preceded by core floods to establish incremental recovery target and detailed reservoir modelling to scale up lab results (or field pilots)
- Applied successfully in several North Sea fields cycles ca.6-12 months
- Currently by
 - ▶ BP Magnus (UKCS) and Ula (NCS)
 - Statoil Gullfaks, OsebergE, Snorre, Veslefrikk; W'shall Brage

Magnus Field Production Plot

- Built on learning from Miller (plus non-op'd Brae S.)
- Imports associated gas from West of Shetland
- Increased contribution from WAG as more fault blocks added
- Long payback often a feature of EOR

Ula Field Production Plot

- Built on Miller and Magnus experience
- Imports associated gas from nearby fields
- Increased contribution as WAG widened

North Sea - Polymer Assisted Water Flooding

- Recovery by water flooding impacted by viscosity difference with oil
 - ► For typical light N.Sea oil, >30°API, 1-10cP contrast not significant
 - Where oil heavier and more viscous, making injection water (<1cP) more viscous introducing polymers may improve recovery vs seawater
- ➤ UKCS pilot scheme by **Chevron in Captain** (ca.100cP oil), NCS pilot by **Statoil in Heidrun**, long running Total project in Dalia, offshore Angola:
 - ▶ Identifying best polymer, temperature and salinity constraints
 - Logistics and supply chain getting chemical to offshore wellsites
 - Onsite QC ensuring intended quality is injected in reservoir

Polymer Assisted Water Flooding (continued)

- Results encouraged incorporation of facilities for polymer flooding in asset development planning
 - Captain late life development planning
 - Redevelopment planning for BP's Schiehallion field, West of Shetland
 - Final FID pending for both
- EOR favours companies with
 - 'long time perspective' as offshore EOR project risk mitigation reflected in v.long time frames
 - R&D resources
 - ability to move opportunities out of the laboratory and into field
 - access to cheaper, proving grounds
 - Collaborative approaches to shared risk mitigation e.g. for polymer BP+Statoil partners in Dalia

- Emerging EOR methods
 - Microbial EOR (MEOR)
 - Low Salinity Water Flooding, LSWF
- Both reduce residual oil saturation in rock
 - In MEOR bacteria is introduced and nourished in reservoir to effect a reduction in surface tension and reduce oil trapping in pores
 - Science behind low salinity effect is still under debate
- 'Cheap' proving grounds have been important
 - Statoil ongoing MEOR trial in Norne, NCS, but have collaborated on N.American field trials with Glori Energy (early Gullfaks pilot too)
 - ▶ BP forefront of evaluation of Low Salinity WF, have progressed the technique through a progression of field trials initially onshore Alaska
- LSWF/ LoSal® has been adopted for field-wide deployment in the next development phase of Clair, West of Shetland, under construction(BP)

Offshore EOR

Challenges:

- Remoteness, weather, sea-state
- Space and weight limitations
- Expensive wells, wide well spacing
- Reservoir understanding
- Seawater main resource
- Flow assurance
- Mature field: old wells, commingled
- Pilot testing
- Access to experienced specialists

Resourcing:

- Integrated team incl.wells, facilities from outset for early ID of issues
- Location/ nature of unswept oil coupled with geology
- Supplementary core analysis to confirm EOR opportunity
- Additional PVT analysis
- Flow assurance provision
- Monitoring and surveillance plan
- People: continuity, long term

amec foster wheeler

Offshore EOR Incremental Recovery

- Reporting sporadic, estimates not always consistent/ comparable
 - ▶ N.Sea regional average RF 46% but range is wide ca.20%-70%
 - ► Similarly incremental RF from EOR has range ca.2%-15%
- Localised EOR dilutes incremental field recovery e.g. if EOR adds 10% RF from a 200MMstb fault block of a 1000MMstb field, field RF +2%
- Field specifics incl. development history impact EOR increment also size of field, nature of reservoir (sandstone/ carbonate), temperature
- EOR understanding, practises steadily evolving collaboration and information dissemination/sharing important
- UKCS review identifies GI (incl.CO₂), WAG, polymer EOR and LSWF as most applicable

Questions?

G.Coghlan, Ingen-Ideas an AMEC FW company