

RECENT WORKFLOW IMPROVEMENT FOR QUANTITATIVE 4D SEISMIC

C. HUBANS

CONTENT

- 1. What is 4D ?
 - 2. Deep offshore success :
- 3. New challenges ?
- > 3.1 Carbonates
- > 3.2 Complex structured area
- 4. Conclusions on TOTAL's specificities.

1 - WHAT IS 4D ?

WHAT IS 4D SEISMIC OR TIMELAPSE SEISMIC ?

- 4D Seismic corresponds to repeated seismic acquisition during the production of an oil field.
- Seismic acquisitions can be 1D, 2D or 3D
- 1D seismic (VSP) = > Z or TWT >
- 2D seismic = > Z or TWT + X (or Y)>
- >
- 3D seismic = > Z or TWT + X and Y

4D EFFECT EXAMPLE ON SEISMIC

4D SEISMIC: WHO IS INVOLVED?

Petrophysicists	 Build RPM for 4D feasibility Check & update RPM with 4D
Geophysicists	 Perform 4D feasibility Acquire 4D seismic data Process 4D seismic data Interpret 4D seismic data
Geologists	 Participate to 4D feasibility Participate to 4D interpretation Update geological model according to 4D interpretation results
Reservoir engineers	 Define monitoring needs Participate to 4D feasibility Participate to 4D interpretation Integrate 4D for reservoir model update and into the dynamic synthesis
Managers	 Define monitoring needs Participate to 4D feasibility Integrate 4D inside the industrial project

4D TOTAL WORKFLOW

2 – DEEP OFFSHORE SUCCESS :

ANP seminar 23-24 March 2017 : « Recent Workflow improvement for quantitative 4D seismic » C. Hubans

4D TOTAL WORKFLOW

STANDARD 4D SEISMIC WORKFLOW

STANDARD 4D SEISMIC WORKFLOW

One example in deep offshore

- We see clearly the reservoir and associated 4D signal ?
- We trust all 4D signals !
- How to interpret and to understand ?
 - ➔ Transverse team

3 – NEW CHALLENGES ?

NEW CHALLENGES FOR 4D ?

- 1. Carbonates.
- 2. Onshore fields.
- 3. Complex structural context (subsalt)
- 4. Non conventional
- And very often 2 or 3 challenges are mixted !

NEW CHALLENGES FOR 4D ?

1. Carbonates.

2. Onshore fields.

3. Complex structural context (subsalt)

- 4. Non conventional
- And very often 2 or 3 challenges are mixted !

3.1 – CARBONATES

4D SITUATION TO DAY

Innovation efforts

4D in clastics

Late 80's ⇔ first acquisition Late 90's ⇔ Many field acquisitions

4D in carbonates

Late 90's ! ⇔ feasibility studies 2005⇔ first field pilots 2007-16 ⇔ full field acquisitions

WHY CARBONATES ARE MORE DIFFICULT ?

Higher stiffness of the matrix ⇔ smaller fluid sensitivity !
 → but non zero !

⇔ smaller pressure impact !

4D signal is smaller than for turbidites !

4D IN CARBONATES : MAP OF 4D ANOMALIES

MAP OF 4D ANOMALIES + FAULT NETWORK

Faults drive the water sweeping : different fault transmissivity

ANP seminar 23-24 March 2017 : « Recent Workflow improvement for quantitative 4D seismic » C. Hubans

WHY CARBONATES ARE MORE DIFFICULT ?

Higher stiffness of the matrix ⇔ smaller fluid sensitivity !
 → but non zero !

⇔ smaller pressure impact !

4D signal is smaller than for turbidites !

 High internal multiples energy : 4D coherent noise is larger than for deep offshore

4D CAN ALSO LOOKS LIKE :

dVp/Vp in noisy case

- Questions :
 - ➔ Where is the reservoir ?
 - ➔ Are all these anomalies true ?
 - → How to recognize them ?
 - → Can we trust ?

- Answers :
 - → picked on 3D, calibrated on wells.
 - → There is certainly true anomalies.
 - → Consistency with geology ?
 - ➔ What is the noise ?

WHY CARBONATES ARE MORE DIFFICULT ?

Higher stiffness of the matrix ⇔ smaller fluid sensitivity !
 → but non zero !

⇔ smaller pressure impact !

4D signal is smaller than for turbidites !

- High internal multiples energy :
 4D coherent noise is larger than for deep offshore
- Complexity of porous media 4D signal less readable than for turbidites

WORKFLOW: An Integrated Interpretation Approach

EXAMPLE IS A CARBONATE RESERVOIR

Complete inversion chain :

- 1 pure Data driven inversion : Warping → dVp/Vp
- 2 4D seismic inversion @ wells to integrate well knowledge.
- 3 4D seismic inversion on stratigraphic model → dlp/lp

VELOCITY CHANGE INTERPRETATION & LIMITS

CAL4D INVERSION AT PSEUDO-W5 LOCATION

 Cal4D: layer-based inversion

- Less artifacts:
 - no tuning effect
 - no side lobes

 Velocity and density changes inversion, even from low angle stacks

IMPEDANCE CHANGE INTERPRETATION

3.2 – COMPLEX STRUCTURAL CONTEXT

ANP seminar 23-24 March 2017 : « Recent Workflow improvement for quantitative 4D seismic » C. Hubans

4D TOTAL WORKFLOW

FULLWAVE MODELING

Base and monitor models

2D & 3D acoustic & elastic to validate.

S-R are inverted.

For downgoing wave modeling we compute the node image as a source

CONCLUSIONS OF THIS FEASIBILITY STUDY

Evaluation of 4D signal and non repeatability impact !

- 4D signal is small
- We can detect it by very good repeatability design :
 - Nodes on seabed
 - PRM
- For imaging very strong dips below salt we need very far offsets
- Business shows that retrievable nodes and/or PRM is expensive,
 - → V.O.I. study
 - → cost reduction ?
- Original solution : 3D repeated VSP with permanent design.

SUBSURFACE CONTEXT AND 3D VSP RATIONALES

Improved 3D VSP illumination and resolution than surface seismic. Effective and cost efficient 4D monitoring

Subsurface context:

- Field underneath allocht^{1.806}
- HC stakes towards poor to 70-80° have been me²
- Development layout aro channel complexes

□ 3D VSP Purpose:

- De-risk development we^{3,200-} possibilities
 ^{3,400-}
- Field recovery managen^{3.500}

□ Acquisition Means: wc₄...

- Permanent installation c_{4,200} well UC (W12)
- Streamer less 3D survey 4.600only is required
- Rig less borehole acquis.....
 via an umbilical cable (05.000.

ANP seminar 23-24 March 2017 : « Recent Workflow improvement for quantitative 4D seismic » C. Hubans

TOTAL'S SPECIFICITIES

- Total has developped a very wide and transverse workflow for 4D interpretation.
- The detailed and quantitative interpretation results are possible thank to the 4D attributes quality :
 - Acquisition & processing care.
 - Warping and 4D inversion patented technics.
 - This is a marvellous opportunity to gather all geosciences people in front of the same workstation and data to build the best possible understanding of reservoir behavior. (4D Toolbox..!)
- Research program are going on to reduce cost & delay and to adapt this workflow in different geological context as :
 - Subsalt
 - Carbonates

ACKNOWLEDGEMENTS/THANK YOU/QUESTIONS

• Thank you for your attention !

