
#### AIRPORT FINANCIAL PERFORMANCE: A HYBRID FRAMEWORK TO EVALUATE NON-AERONAUTICAL REVENUES GENERATION EFFICIENCY

Author: MSc. Marcus Vinicius do Nascimento

08/10/2024

# Summary

- Introduction
- Literature Review
- Proposed Method
- Method Application
- Results and Final Considerations
- References

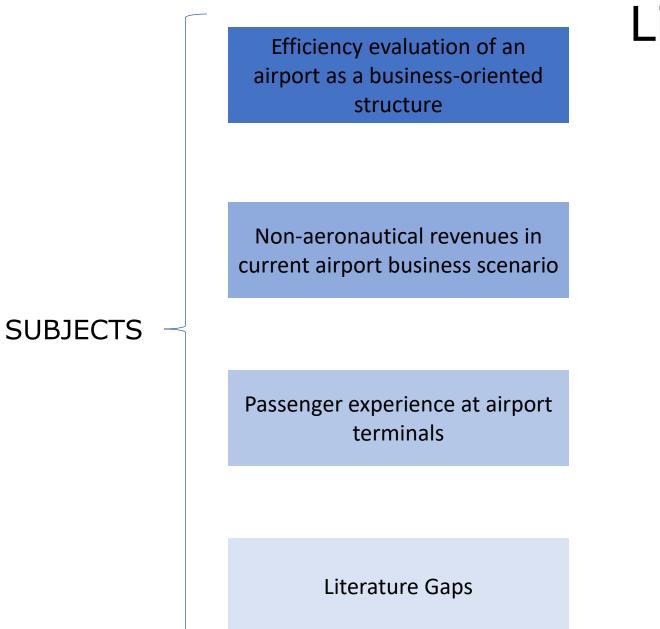


### Introduction

#### Graham (2008) and IATA (2019)

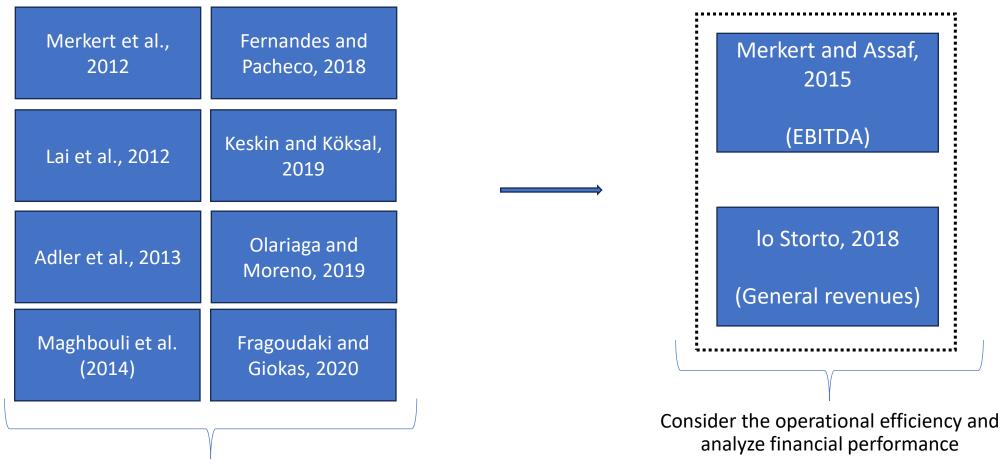
## Introduction

 Wu and Chen (2019) => non-aeronautical revenues are potential sources to promote the sustainable financial development of airports


 ACI World Airport Economics Database (2023) => overall airport industry costs surged by 12.39% between 2015 and 2019

## Introduction

 The main objective of this paper is to construct a hybrid framework for calculating an airport efficiency index, specifically focusing on nonaeronautical revenue generation while incorporating the influence of passenger satisfaction levels.


> How to measure airport efficiency in generating nonaeronautical revenues?

How does passenger satisfaction affect the airport's efficiency in transforming costs into non-aeronautical revenue?



#### Literature Review

#### Efficiency evaluation of an airport as a businessoriented structure



Rely on operational efficiency

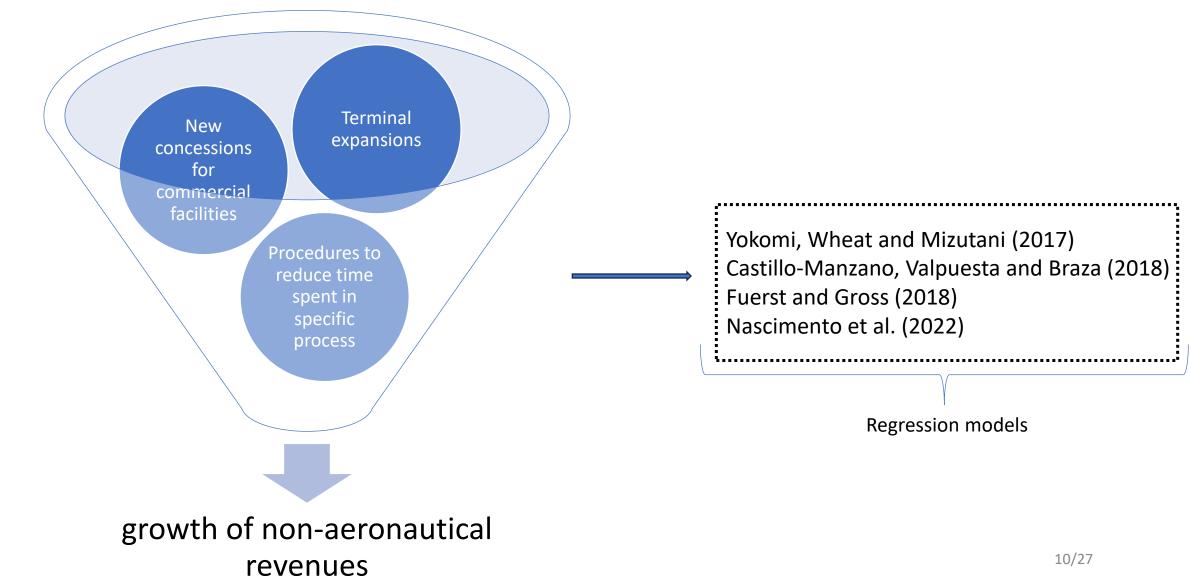
#### Efficiency evaluation of an airport as a businessoriented structure



Implement machine learning (ML) techniques to predict performance or to complement a DEA model

Examples of ML applications:

- Long Short-Term Memory (LSTM) -> Neural Network => aircraft boarding


- Self Organizing Maps (SOM) -> clusterizing => operational efficiency

# Non-aeronautical revenues in current airport business scenario

Kazda and Caves (2015) => many airport administrations obtain higher revenues from non-aeronautical services than from aeronautical services

In Brazil, for example, the airports privatization has started in 2012. Since then, the concessionaires financial report indicates an average growth of almost 65% in the participation of non-aeronautical revenues on airport revenues distribution after the first year of privatization.

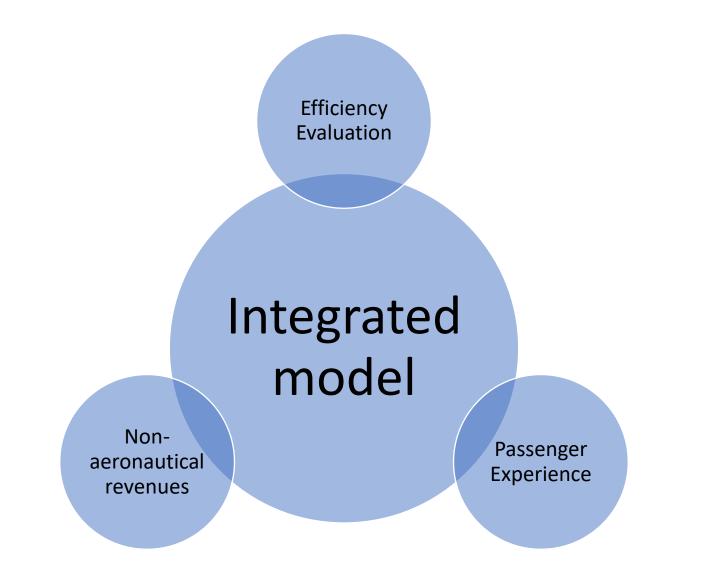
# Non-aeronautical revenues in current airport business scenario

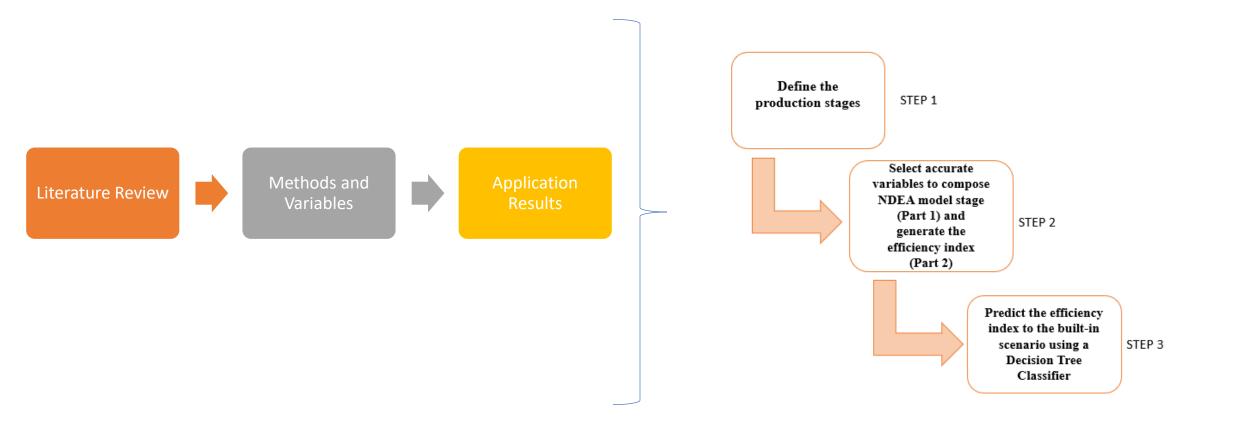


#### Passenger experience at airport terminals

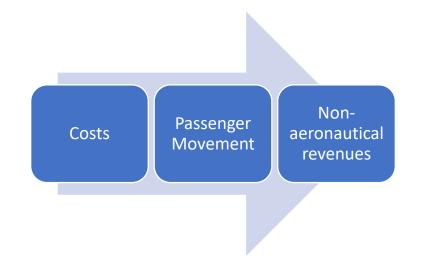
Brink and Madison (1975) => discussion about the level of service based on how much time a passenger spends at a terminal.

Castillo-Manzano (2010) => suggests that the expenditure levels increase as the waiting time increases.


#### Passenger experience at airport terminals


Kiliç and Çadirci (2020) => ambient conditions and terminal facilities as two of the top 10 attributes that have positive impact on passenger experience.

Nascimento et al. (2022) => positive passenger evaluation of products price on commercial establishments has a negative impact on non-aeronautical revenues.


Silva et al. (2024) => expenditure levels increase as the waiting time and the passenger satisfaction increases.

#### Literature final consideration





#### STEP 1: Define the production stages (cost-revenues stage)



# • STEP 2: Select accurate variables to compose each NDEA model stage (part 1)

| Variable                  | Measurement                                        | Explanation                                                                       | Variable function<br>Stage 1 | Variable function<br>Stage 2 |
|---------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------|------------------------------|
| Operational Costs         | R\$MM                                              | Represents the main necessary operational costs to maintain the airport operation | Input                        | -                            |
| Personal Costs            | R\$MM                                              | Represents the main necessary personal costs to maintain the airport operation    | Input                        | -                            |
| Domestic Passenger        | Number                                             | Total domestic passenger movement                                                 | Output                       | Input                        |
| International Passenger   | Number                                             | Total international passenger movement establishments                             | Output                       | Input                        |
| Non-aeronautical revenues | Value of non-<br>aeronautical revenues<br>x1000000 | Non-aeronautical revenue during a specific period                                 | -                            | Output                       |

#### STEP 2: Generate the efficiency index using the NDEA model (part 2)

$$E_0 = \max \sum_{r=1}^s u_r . y_{r0}$$

$$\begin{split} &\sum_{i=1}^{m} v_i . x_{i0} = 1 \\ &\sum_{d=1}^{q} w_d . z_{dj} - \sum_{i=1}^{m} v_i . x_{ij} \le 0, j = 1, 2, ..., n. \\ &\sum_{r=1}^{s} u_r . y_{rj} - \sum_{d=1}^{q} w_d . z_{dj} \le 0, j = 1, 2, ..., n. \\ &u_r, v_i, w_d \ge \varepsilon, \ i = 1, 2, ..., m; \ r = 1, 2, ..., s; \ d = 1, 2, ..., D. \end{split}$$

# • STEP 3: Prediction the efficiency index to the built-in scenario using passenger satisfaction

| Variables                                  | Definition                                                                                |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| CHECKIN PROCESS                            | Score for passenger satisfaction regarding Check-in process                               |  |  |
| SECURITY INSPECTION                        | Score for passenger satisfaction regarding Security Inspection process                    |  |  |
| QUALITY OF COMMERCIAL ESTABLISHMENTS       | Score for passenger satisfaction regarding the quality of Commercial Services             |  |  |
| QUANTITY OF COMMERCIAL ESTABLISHMENTS      | Score for passenger satisfaction regarding the quantity of Commercial Services            |  |  |
| QUALITYOF FOOD & BEVERAGE ESTABLISHMENTS   | Score for passenger satisfaction<br>regarding the quality of Food &<br>Beverage Services  |  |  |
| QUANTITY OF FOOD & BEVERAGE ESTABLISHMENTS | Score for passenger satisfaction<br>regarding the quantity of Food &<br>Beverage Services |  |  |
| PRICE OF FOOD & BEVERAGE ESTABLISHMENTS    | Score for passenger satisfaction regarding the price of Food & Beverage Services          |  |  |

All data for has been collected since 2013 until 2022

| Airport | Obs | YEAR | QUARTER | Service_Costs | Personal_Costs | PAX_DOM | PAX_INT | NA_REVENUE |
|---------|-----|------|---------|---------------|----------------|---------|---------|------------|
| GRU     | 1   | 2013 | 1       | 182898        | 42299          | 5378957 | 3081354 | 128000     |
| GRU     | 2   | 2013 | 2       | 235652        | 51600          | 5527920 | 2053952 | 157400     |
| GRU     | 3   | 2013 | 3       | 225039        | 46941          | 6027057 | 3289396 | 154300     |
| GRU     | 4   | 2013 | 4       | 217892        | 47880          | 6503937 | 3215917 | 186000     |
| GRU     | 5   | 2014 | 1       | 233932        | 50953          | 6504451 | 3211829 | 176100     |
| GRU     | 6   | 2014 | 2       | 265820        | 33529          | 6087265 | 3255317 | 241600     |
| GRU     | 7   | 2014 | 3       | 316512        | 19456          | 6482004 | 3664111 | 251900     |
| GRU     | 8   | 2014 | 4       | 278571        | 75789          | 6863009 | 3472006 | 245600     |
| GRU     | 9   | 2015 | 1       | 301482        | 40048          | 6490994 | 3408322 | 240500     |
| GRU     | 10  | 2015 | 2       | 499752        | 42460          | 5954793 | 3231682 | 239600     |

#### DJL package in the R language.

| $\circ$  | RStudio                                                                                                                                       |                                               |                     |                             |            |             |                        |             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------|------------|-------------|------------------------|-------------|
| 0 - C    | 🛐 🖙 🗣 🔚 🔚 📄 🌈 Go to file/function 👘 🔚 🗸 Addins 🗸                                                                                              |                                               |                     |                             |            |             | 🔋 Project              | :: (None) 🚽 |
|          | EA4.R ×                                                                                                                                       | Enviro                                        | onment              | History                     | Connectio  | ons Tutor   | ial                    |             |
|          | 🛛 💭 🕞 Source on Save 🛛 🔍 🎢 🗸 📳 👘 Source 🗸 🚍                                                                                                   | 🔿 🖪                                           | l 📑 Ir              | nport Datas                 | et 🗸 🕒 1   | .08 MiB 👻 🧃 | 💉 📄 List               | •   @ •     |
| 1        | library(readxl)                                                                                                                               | R - Global Environment - Q.                   |                     |                             |            |             |                        |             |
| 2        | <pre>air &lt;- read_excel('/Users/marcus/Documents/ITA/Phd/Tese/Dados/Data1.xlsx')</pre>                                                      |                                               |                     |                             |            |             |                        |             |
| 3        | View(air)                                                                                                                                     | 💿 gru                                         |                     | 35 o                        | 2 variable | s           |                        |             |
|          | library(carData)<br>library(car)                                                                                                              | 0 res                                         |                     | List                        |            | Q           |                        |             |
|          | library(lpSolveAPI)                                                                                                                           | <ul> <li>res</li> </ul>                       |                     |                             | of 9       |             |                        | Q           |
|          | library(DJL)                                                                                                                                  | • res                                         |                     | List of 9                   |            |             | Q                      |             |
| 8        | <pre>X &lt;- data.frame(x1 = subset(air, select = c('Service_Costs')),</pre>                                                                  |                                               |                     |                             |            |             |                        |             |
| 9        | <pre>x2 = subset(air, select = c('Personal_Costs')))</pre>                                                                                    |                                               | .nc.FL              |                             |            |             |                        | Q           |
| 10       | <pre>Z &lt;- data.frame(z1 = subset(air, select = c('PAX_TOT')))</pre>                                                                        | 🕑 res                                         | res.nc.LF List of 9 |                             |            |             |                        | Q           |
| 11       | $Y \leftarrow data.frame(y1 = subset(air, select = c('NA_REVENUE')))$                                                                         | O X 35 obs. of 2 variables                    |                     |                             |            |             |                        |             |
| 12<br>13 | <pre>res.co1 &lt;- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, rts = 'crs', type = "co") data.frame(C01.s1 = res.co1\$eff.s1,</pre> | O Y 35 obs. of 1 variable                     |                     |                             |            |             |                        |             |
| 14       | C01.s2 = res.co1\$eff.s2                                                                                                                      | Files                                         | Plots               | Packages                    | Help       | Viewer P    | recentation            |             |
| 15       | res.nc.LF <- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, type = "nc", leader = "1st")                                               |                                               |                     |                             | Therp      |             | resentation            |             |
| 16       | res.nc.FL <- dm.network.dea(xdata.s1 = X, zdata = Z, ydata.s2 = Y, type = "nc", leader = "2nd")                                               |                                               |                     |                             |            |             |                        |             |
| 17       | <pre>res.co2 &lt;- dm.dea(xdata = X, ydata = Y, rts = 'crs', orientation = 'i')</pre>                                                         | R: Distance measure using DEA - Find in Topic |                     |                             |            |             |                        |             |
| 18       | <pre>19 data.frame(CO1.s1 = res.co1\$eff.s1,</pre>                                                                                            |                                               |                     | dm dea (D II )              |            |             | <b>D</b> Desumentation |             |
|          |                                                                                                                                               |                                               |                     | dm.dea {DJL} R Documentatio |            |             |                        | entation    |
| 20<br>21 | C01.s2 = res.co1\$eff.s2,                                                                                                                     |                                               |                     |                             |            |             |                        |             |
| 6:20     | (Top Level)                                                                                                                                   |                                               |                     |                             |            |             | DEA                    |             |

#### NDEA RESULTS

| YEARQUARTER | Global1 | CCR  | BCC  |
|-------------|---------|------|------|
| 2013Q1      | 0.60    | 0.56 | 0.74 |
| 2013Q2      | 0.54    | 0.55 | 0.65 |
| 2013Q3      | 0.59    | 0.57 | 0.69 |
| 2013Q4      | 0.64    | 0.70 | 0.77 |
| 2014Q1      | 0.60    | 0.62 | 0.70 |
| 2014Q2      | 0.72    | 0.94 | 0.94 |
| 2014Q3      | 0.77    | 1.00 | 1.00 |
| 2014Q4      | 0.58    | 0.65 | 0.69 |
| 2015Q1      | 0.66    | 0.81 | 0.81 |
| 2015Q2      | 0.54    | 0.56 | 0.57 |
| 2015Q3      | 0.67    | 0.79 | 0.81 |
| 2015Q4      | 0.75    | 1.00 | 1.00 |
| 2016Q1      | 0.63    | 0.73 | 0.76 |
| 2016Q2      | 0.62    | 0.74 | 0.76 |
| 2016Q3      | 0.62    | 0.73 | 0.74 |
| 2016Q4      | 0.62    | 0.73 | 0.75 |
| 2017Q1      | 0.62    | 0.71 | 0.75 |
| 2017Q2      | 0.64    | 0.77 | 0.80 |

The NDEA model results present:

- The aggregate efficiency of the cost-revenue cycle:

- 1st phase -> transforming personal and service costs into passenger movement
- 2nd phase -> transforming passenger movement into non-aviation revenues

In each phase, the inputs are setted to be 100% used.

NDEA RESULTS

Efficiency Class:

- 1. Low Efficiency => NDEA efficiency from 0% to 33%
- 2. Regular Efficiency => NDEA efficiency from 33% to 66%
- 3. High Efficiency => NDEA efficiency from 66% to 100%

#### Decision tree classifier

#### import os

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model\_selection import train\_test\_split, cross\_val\_score, RandomizedSearchCV, StratifiedKFold from sklearn.tree import DecisionTreeClassifier, plot\_tree from sklearn.metrics import accuracy\_score, classification\_report, confusion\_matrix from scipy.stats import randint

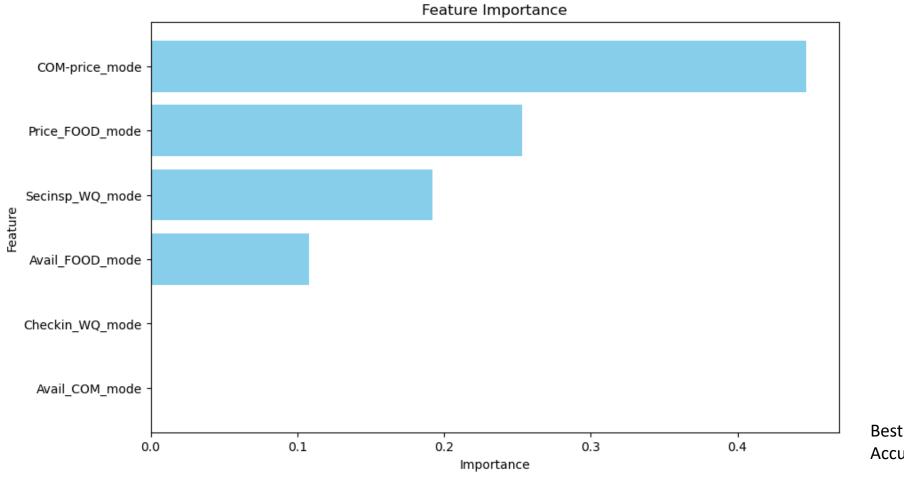
AIR = 'C:/Users/mvnma/iCloudDrive/Documents/ITA/Phd/Tese/Dados/'
df = pd.read\_excel(AIR + 'GRU\_Data\_month.xlsx')

#### print(df.isnull().sum())

estat = 'mode'
features = [
 'Checkin\_WQ',
 'Secinsp\_WQ',
 'Avail\_FOOD',
 'Price\_FOOD',
 'Avail\_COM',
 'COM-price'

X\_clf = df[[f'{feature}\_{estat}' for feature in features]]
y\_clf = df['Class1']

X\_train\_clf, X\_test\_clf, y\_train\_clf, y\_test\_clf = train\_test\_split(X\_clf, y\_clf, test\_size=0.25, random\_state=42)


model\_clf = DecisionTreeClassifier(random\_state=42)

param\_dist = {
 'max\_depth': randint(2, 21),
 'min\_samples\_split': randint(2, 21),
 'min\_samples\_losf': randint(2, 21)

A complete python code to run a Machine Learning model called Decision Tree Classifier

#### **Results and Final Considerations**

#### Feature Importance



Best cross-validation score: 0.875 Accuracy with the best model: 0.962

#### Feature Importance

## **Results and Final Considerations**

**Key Features Influencing Classification**: The decision tree model revealed that pricing variables— COM-price\_mode (44.7%) and Price\_FOOD\_mode (25.3%)—are the most important factors driving customer satisfaction or service quality classification.

This emphasizes the critical role economic factors play in customer behavior at airports, suggesting that administrators should focus on optimizing pricing strategies for commercial services and food to improve overall customer experience.

#### Feature Importance

## **Results and Final Considerations**

**Model Performance and Generalization**: The model achieved strong performance with a cross-validation accuracy of 87.5% and a test set accuracy of 96.3%. However, cross-validation results varied across data folds, ranging from 68.2% to 95.2%, indicating some sensitivity to data partitioning.

Addressing class imbalances and diversifying data splits could improve consistency in generalization across different scenarios.

#### Feature Importance

# **Results and Final Considerations**

**Operational Insights for Efficiency**: Insights from feature importance show that operational variables like Checkin\_WQ\_mode and Avail\_COM\_mode had little to no influence on classification outcomes, while food availability and security inspections had moderate impact.

This suggests that airport administrators should prioritize optimizing pricing strategies, while also ensuring that food availability and security processes are efficient, to improve overall service quality and customer satisfaction.

Thank you! Contact: marcus.nascimento@ga.ita.br