ANEXO III - METODOLOGIA AHP

Métodos de decisão multicritério como o Analytic Hierarchy Process — AHP (Método de Análise Hierárquica) foram desenvolvidos para ajudar na tomada de decisão a partir de uma série de fatores, sejam quantitativos ou qualitativos.

O fundamento do AHP consiste na decomposição e síntese das relações entre os critérios até que se chegue a uma priorização dos seus indicadores, aproximando-se de uma melhor resposta de medição única de desempenho (Saaty, 1991)¹. De maneira geral, AHP é a teoria e a metodologia para medição relativa. Na medição relativa, não se está interessado na exata medição de algumas quantidades, mas sim nas proporções entre elas. A ideia central é a redução do estudo de sistemas a uma sequência de comparações aos pares. Segundo Vieira (2006)², o método está construído sobre três princípios:

- 1. construção de hierarquias: um problema complexo geralmente requer a estruturação dos critérios em uma hierarquia, por ser um procedimento natural do raciocínio humano. O método AHP permite a estruturação dos critérios, sendo a estruturação em árvore a mais utilizada, na qual o critério de mais alto nível é decomposto a níveis mais detalhados.
- 2. definição de prioridades: tais prioridades são definidas a partir de comparações par a par dos elementos, à luz de determinado critério.
- 3. consistência lógica: o método permite, por meio da proposição de índices, avaliar a consistência da definição de prioridades, ou seja, é capaz de verificar a consistência dos julgamentos.

Cotidianamente, as pessoas têm maior facilidade para expressar preferência entre critérios utilizando julgamentos verbais do que valores numéricos. Dessa maneira, relações entre números e termos linguísticos foram propostas como forma de apoiar os tomadores de decisão no processo de definição das prioridades. A Tabela 1 exibe a associação entre julgamentos verbais e a escala de intensidade de importância utilizada.

Tabela 1. Comparações do AHP. Adaptado de Saaty (1991).

Valor da Intensidade de Importância	Definição	Explicação
1	Mesma importância.	Os dois critérios contribuem igualmente para o objetivo.

2	Importância pequena de um critério sobre o outro.	A experiência e o julgamento favorecem levemente um critério em relação ao outro.				
4	Importância grande ou essencial.	A experiência e o julgamento favorecem fortemente um critério em relação ao outro.				
6	Importância muito grande ou demonstrada.	Um critério é muito fortemente favorecido em relação ao outro; sua dominação de importância é demonstrada na prática.				
8	Importância absoluta.	A evidência favorece um critério em relação ao outro com o mais alto grau de certeza.				
Inversos dos valores anteriores	Se o critério i recebe um determinado valor quando comparado com o critério j, então j tem o valor inverso quando comparado com i.	Uma designação razoável.				
Números racionais	Razões resultantes da escala.	Se a consistência tiver de ser forçada para obter valores numéricos n, somente para completar a matriz.				

Uma vez definida a estrutura hierárquica, faz-se a comparação par a par dos critérios com objetivo de definir a importância relativa dos critérios. A Tabela 2 exemplifica a matriz de comparação paritária entre os critérios específicos de um critério global genérico.

Tabela 2. Exemplo de matriz de comparações paritárias

Critério Global Genérico	Critério Específico "A"	Critério Específico "B"	Critério Específico "C"	Critério Específico "D"
Critério Específico "A"	1,000	4,000	1,000	0,500
Critério Específico "B"	0,250	1,000	0,500	0,250
Critério Específico "C"	1,000	2,000	1,000	1,000
Critério Específico "D"	2,000	4,000	1,000	1,000

Para a matriz exibida na Tabela 2, o critério específico "A" é 4 (quatro) vezes mais importante que o critério específico "B", por exemplo.

Após o preenchimento da matriz de comparações paritárias obtém-se o vetor peso, o qual indica a importância relativa de cada critério em relação aos

demais. As formas de obtenção desse vetor são variadas é aqui optou-se pelo método da média geométrica. Nesse método cada componente do vetor peso é calculado como a média geométrica dos elementos da respectiva linha divididos por um termo de normatização, conforme a equação 1.

$$w_{i} = \frac{\left(\prod_{j=1}^{n} a_{ij}\right)^{1/n}}{\sum_{i=1}^{n} \left(\prod_{i=1}^{n} a_{ij}\right)^{1/n}}$$
(Equação 1)

Sendo:

- *w_i*: peso do critério *i*;
- *a_i*: valor de importância do critério *i* em relação ao critério *j*.

Aplicando-se a equação 1 à matriz apresentada na Tabela 2 obtém-se o vetor peso exibido na Tabela 3.

Tabela 3. Vetor de pesos associado à Tabela 2.

Critério Específico "A"	0,265
Critério Específico "B"	0,094
Critério Específico "C"	0,265
Critério Específico "D"	0,375

Consistência é, sem sombra de dúvidas, uma propriedade desejável. Contudo, um tomador de decisão raramente consegue fazer comparações de pares perfeitamente consistentes. Uma maneira de se avaliar o grau de consistência é através do cálculo do Resultado da Consistência — RC. Se o valor do RC for inferior a 0,1 o grau de consistência é satisfatório, mas se RC for superior a 0,1 podem existir problemas de inconsistência e o método AHP não deverá ser utilizado (SAATY, 1991). O cálculo de RC é definido pela equação 2:

$$RC = \frac{\lambda_{m\acute{a}x} - n}{n - 1} / IR$$
 (Equação 2)

Sendo:

- n é a ordem da matriz; e
- λ_{máx} é dado pela equação 3:

$$\lambda_m = m\acute{e}da \ do \ vetor \ rac{Aw}{w}$$
 (Equação 3)

Sendo:

- A é a matriz de comparação paritária; e
- w é o vetor peso.

Já IR é definido como Índice Randômico Médio, que varia com o tamanho da matriz, mostrado na Tabela 4 para matrizes de ordem 1 a 15.

Tabela 4. Índice Randômico Médio do AHP em função do tamanho da matriz. Fonte: Saaty (1991).

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0,00	0,00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49	1.51	1.48	1.56	1.57	1.59

Para a matriz exemplificada na Tabela 2 obteve-se valor de RC igual a 0,045.

Para avaliação dos critérios foram convidadas pessoas com experiência de atuação nas áreas de aeroportos e meio ambiente. Aos avaliadores foi requisitado o preenchimento de uma autoavaliação sobre o tema, a qual consistiu na atribuição de notas (1, 2 ou 3) para o seu conhecimento a respeito de cada um dos critérios globais. A soma da pontuação obtida por cada avaliador foi então dividida pela soma da pontuação de todos avaliadores, obtendo-se assim o peso de cada avaliador. Por fim, a consolidação da importância relativa de cada critério foi obtida após multiplicar os pesos resultantes das comparações paritárias realizadas por cada avaliador pelo peso do seu respectivo avaliador e somar os resultados obtidos.

- [1] Saaty, T. L. (1991), "Método de Análise Hierárquica", Tradução de Wainer da Silveira e Silva, McGraw-Hill, Makron, São Paulo, SP.
- [2] Vieira, G.H. (2006), Análise e comparação dos métodos de decisão multicritério AHP Clássico e Multiplicativo, Trabalho de Conclusão de Curso (Graduação) Instituto Tecnológico de Aeronáutica, São José dos Campos, SP.