

Alocação de Água 2019/2020

Reservatório Ceraíma

Guanambi - BA 10/05/2019

Pauta da Reunião

- 1. Programa de Operação, Manutenção e Monitoramento de Barragens geração fotovoltaica
- 2. Marco Regulatório cumprimento das novas regras
- 3. Ações previstas na Alocação de Água 2018/2019
- 4. Alocação de Água 2019/2020 demandas, disponibilidades e regras gerais de uso
- 5. Comissão de Acompanhamento da Alocação

1. Programa de Operação, Manutenção e Monitoramento de Barragens - geração fotovoltaica

Programa OMM

Sustentabilidade econômica da operação, manutenção preventiva, monitoramento e ações para segurança das barragens na infraestrutura hídrica instalada no semiárido

Desafios da gestão de reservatórios

- 1) Operação eficiente
- 2) Monitoramento contínuo
- 3) Manutenção preventiva
- 4) Manutenção corretiva
- 5) Segurança de Barragens

Necessidades

- 1) Capacidade técnica
- 2) Instrumentação
- 3) Serviços de OMM permanentes
- 4) Recursos financeiros suficientes

ESTUDO PROSPECTIVO PARA UNIDADES GERADORAS DE ENERGIA ELÉTRICA FOTOVOLTAICAS EM ESPELHOS D'ÁGUA DE RESERVATORIO SEMIÁRIDO BRASILEIRO

RECURSOS ENERGÉTICOS

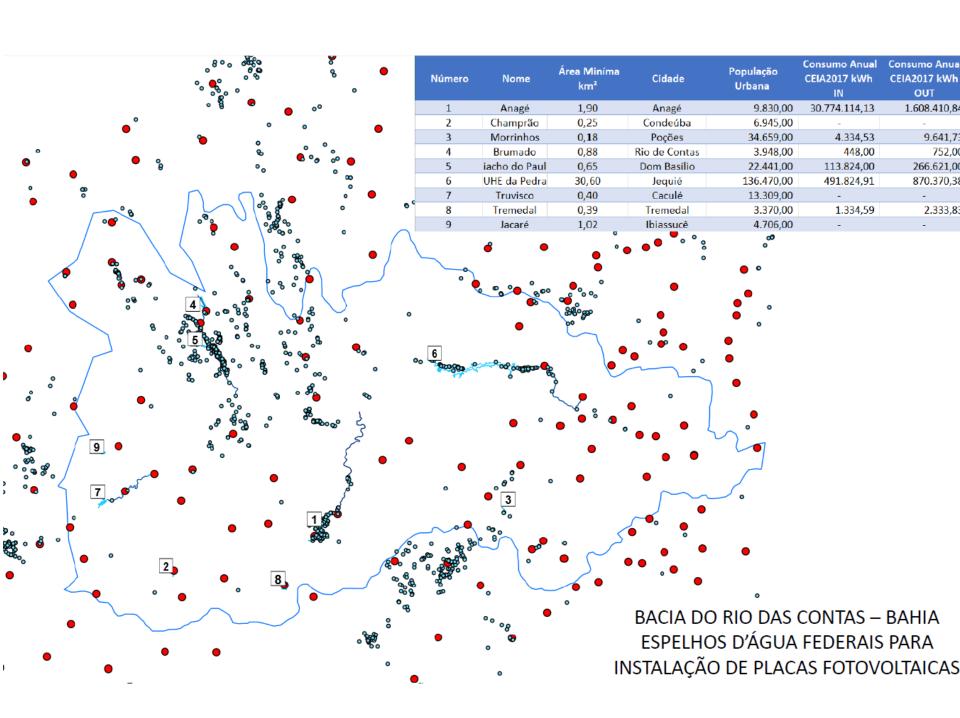
NOTA TECNICA PR 04/18

PROJETO DE COOPERAÇÃO TÉCNICA BRA/IICA/13/001 - PROJETO DE **DESENVOLVIMENTO DO SETOR DE** ÁGUA - INTERÁGUAS - MINISTÉRIO DA INTEGRAÇÃO NACIONAL -MI

PLANO DECENAL DE EXPANSÃO DE ENERGIA

Potencial dos Recursos Energéticos no Horizonte 2050

Rio de Janeiro Setembro de 2018


> Técnica, Econômica/Financeira e Ambiental - EVTEA para a utilização de Fontes de Energia Renovável Agregadas ao Projeto de Integração

> > do Rio São Francisco - PISF

Estudo para determinar a Viabilidade

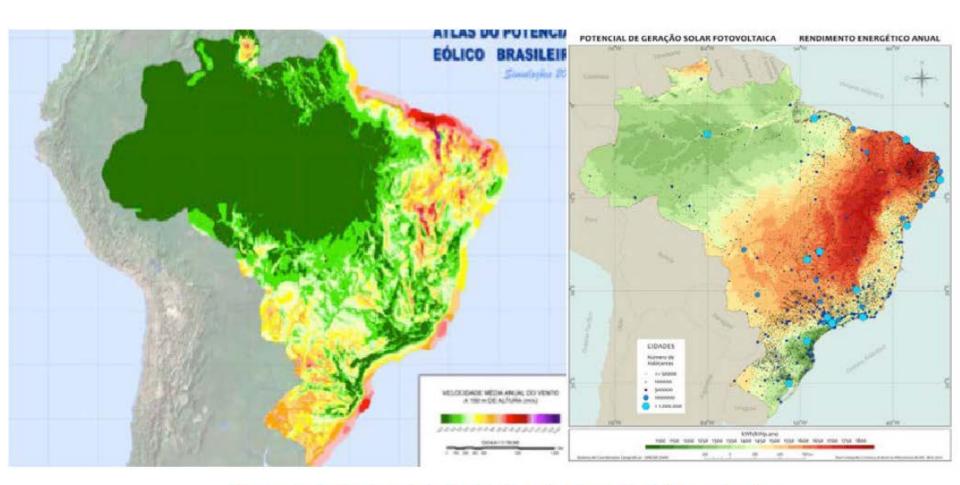
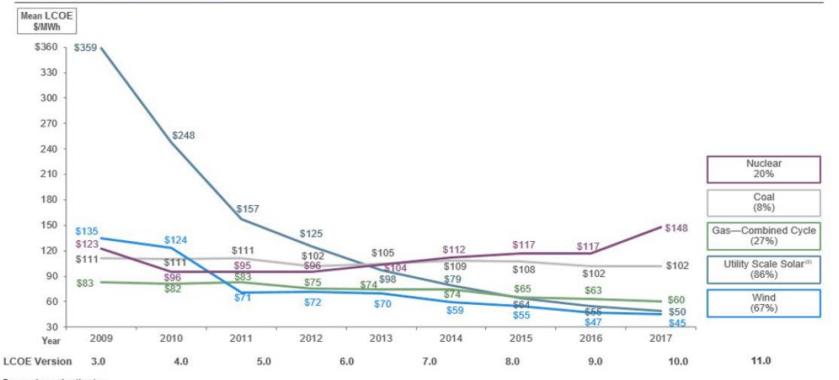



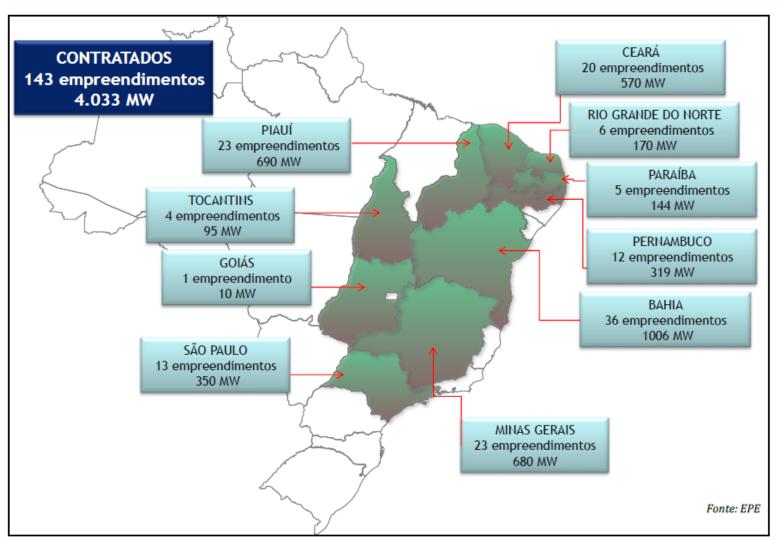
Figura 3.4 - Potencial Brasileiro de Energia Eólica e Solar..

Summary Findings of Lazard's 2017 Levelized Cost of Energy Analysis⁽¹⁾

Selected Historical Mean LCOE Values(2)

Source: Lazard estimates.

Note: Reflects average of unsubsidized high and low LCOE range for given version of LCOE study.


(1) Primarily relates to North American alternative energy landscape, but reflects broader/global cost declines.

Reflects total decrease in mean LCOE since the later of Lazard's LCOE—Version 3.0 or the first year Lazard has tracked the relevant technology.

(3) Reflects mean of fixed-tilt (high end) and single-axis tracking (low end) crystalline PV installations.

PLANO DECENAL DE EXPANSÃO DE ENERGIA

ra 4-7 - Localização dos empreendimentos solares fotovoltaicos contratados nos leilões de energia

Rank Size (kw) Name of reservior (lake) / Name of Country

40.000

70 Maiores Plantas de Solar Flutuante já Instaladas

Plant

Coal mining subsidence area of Huainan

City

		5.17					
2	20.000	Coal mining subsidence area of Huainan City	China	Anhui	Apr/16	-	27
3	9.982	Pei County	China	Anhui	Jul/17	Ciel & Terre	28
4	7.550	Umenoki	Japan	Saitama	Oct/15	Ciel & Terre	20
5	6.776	Jining GCL	China	Shandong	Dec/17	Ciel & Terre	29 30
6	6.338	Queen Elizabeth II Reservoir	UK	London	Mar/16	Ciel & Terre	31
7	3.000	Cheongpung Lake	South Korea	Chungju	Dec/17	LG CNS	32
8	3.000	Otae Province	South Korea	Sangju City	Oct/15	LG CNS	33
9	3.000	Jipyeong Province	South Korea	Sangju City	Oct/15	LG CNS	34
10	2.991	Godley Reservoir Floating Solar PV	UK	Godley	Jan/16	Ciel & Terre	35
11	2.870	Kato Shi (2 plants)	Japan	Hyogo	Mar/15	Ciel & Terre	36
12	2.700	Deoku Reservoir, Myeoku Reservoir (3 plants)	South Korea	Hwaseong	Nov/16	-	37
13	2.600	Hiragio Ike Floating Solar Plant	Japan	Kagawa	Nov/17	Sumitomo Mitsui Construction	38
14	2.548	Tano Ike	Japan	Mie	Dec/17	Ciel & Terre	39
15	2.502	Ootori Ike	Japan	Osaka	Nov/16	Ciel & Terre	40
16	2.435	Noma Ike	Japan	Kagawa	Mar/17	Ciel & Terre	41
17	2.402	Hachigo Ike	Japan	Hyogo	Oct/17	Ciel & Terre	42
18	2.400	Tsuga Ike	Japan	Mie	Aug/16	Ciel & Terre	42
19	2.398	Sohara Ike	Japan	Mie	Mar/16	Ciel & Terre	43
20	2.320	Agongdian Reservoir	Taiwan	Agongdian	Jun/17	Ciel & Terre	45
21	2.313	Sakasama Ike	Japan	Hyogo	May/15	Ciel & Terre	46
22	2.300	Shiraishi Town Ariake Reservoir	Japan	Saga	Mar/16	Co-developed by West Energy Solutions &	47
						Kyoraku	48
							40
							49
							50
							51
							52

China

Operating

from

May/17

System Provider

City/Province

Anhui

23	2.297	Komaga
24	2.170	Watashi
25	2.156	Naga Ike Higashi
26	2.009	Yado Ooike (Sun Lakes Yado)
27	2.000	Boryeong Dam
28	2.000	Chupungyeong Reservoir
29	2.000	Kinuura Lumberyard
30	1.992	Sakurakami Ike
31	1.966	Shimoyama Ike
32	1.800	Ichigou Ike Floating Solar Plant
33	1.800	Nyakuoji Ike
34	1.751	Hirono Shin Ike
35	1.714	Yakino Ike
36	1.700	Hyogo No. 9 Floating Solar Plant
37	1.568	Yukimine Ike
38	1.520	Mitakabe Reservoir Floating Solar Plant
39	1.485	Funatsu Osawa
40	1.428	Kawarayama Ike
41	1.426	Besso Ike
42	1.330	Mito City
43	1.261	Hirono Nigo Ike
44	1.260	Hira Ike
45	1.212	Kobe Ooike
46	1.202	Gono Ike
47	1.200	Towa Arcs Fukaya Floating Solar Plant
48	1.200	Gotan Ike
49	1.200	Uchiga Ike Floating Solar Plant
50	1.200	Aono Ike Floating Solar Plant
51	1.188	Kyuhin

Okegawa

1.180

Japan
Japan
South
Korea
South
Korea
Japan

Japan

Japan

Dec/17

Dec/17

Nov/16

Jan/16

Jul/16

Dec/16

Feb/16

Dec/16

Aug/17

Mar/17

Mar/17

Sep/16

Jul/16

Apr/15

Jul/17

Sep/17

Sep/15

Dec/15

Jun/17

Aug/15

Sep/17

Jul/16

May/16

May/16

Oct/17

Mar/17

Aug/16

Feb/17

Jan/17

Jul/13

Hyogo

Kagawa

Hyogo

Hyogo

Boryeong

Yeong Dong Aichi

Hyogo

Okayama

Hyogo

Aichi

Hyogo

Hyogo

Hyogo

Tokushima

Kagawa

Hyogo

Hyogo

Tokushima

Ibaraki

Hyogo

Hyogo

Hyogo

Hyogo

Saitama

Gifu

Hyogo

Hyogo

Tottori

Saitama

Japan

Ciel & Terre

Ciel & Terre

Ciel & Terre

Takiron

Engineering

K-water

Ibiden Engineering

Ciel & Terre

Ciel & Terre

Reservoir Solar

Company Sumitomo Mitsui

Construction

Ciel & Terre

Ciel & Terre

Reservoir Solar

Company

Ciel & Terre Sumitomo Mitsui

Construction

Ciel & Terre Ciel & Terre

Ciel & Terre West Group &

Kyoraku

Ciel & Terre

Ciel & Terre

Ciel & Terre

Ciel & Terre

Co-developed by

Towa Arcs & Otos Reservoir Solar

Company Reservoir Solar

Company Reservoir Solar

Company

Ciel & Terre

Ciel & Terre

Resultados do Estudo PISF

- Geração solar (Eixos Norte e Leste):
 - o Entorno dos canais R\$ 141 157/MWh
 - o Sobre os canais R\$ 204 226/MWh
 - Reservatórios R\$ 154 168/MWh

Considerando o preço teto do 27º LEN - Leilão de Energia Nova 2018 (solar - R\$ 312/MWh e eólica R\$ 255/MWh), os arranjos estudados apresentaram viabilidade econômica.

DADOS EXTRAÍDOS DO ESTUDO DO PISF PARA PRÉ-DIMENSIONAMENTO DA INSTALAÇÃO DE CÉLULAS FOTOVOLTAICAS FLUTUANTES EM RESERVATÓRIOS

INSTALAÇÃO DE PLACAS FOTOVOLTAICAS SUSPENSAS NOS RESERVATÓRIOS	AREA M2	25%	50%	pot inst 25% (MW)	pot inst 50% (MW)	Potência instalável em 25% da área (MW)	Fator de carga médio	Investimento na geração R\$	Investimento em conexão R\$
RESERVATÓRIOS PISF EIXO LESTE	11.120.552	2.780.138	5.560.276	219,00	444,00	219,00	27,58%	878.190.000,00	102.030.888,00
Energia ano MWh/ano				529.148,50	1.061.168,20	529.145,00			
Horas / ano				2 416 20	2.390,02	2.416,19			
Horas / dia				6,62	6,55	6,62			
KW/M2				0,07877	0,07985	0,07877			
R\$/MW				4.010.000,00		4.010.000,00			
GHI (entre 5.9 e 6.1) Figura 3.11			_						
RESERVATÓRIOS PISF EIXO NORTE	61.239.814	15.309.954	30.619.907	1.231,00	2.470,00	719,00	26,51%	2.881.863.710,00	237.023.696,00
Energia ano MWh/ano				2.733.291,64	5.007.674,92	1.669.108,00			
Horas / ano				2.220,38		2.321,43			
Horas / dia				6,08		6,36			
KW/M2				0,08041		0,04696			
R\$/MW				2.341.075,31		4.008.155,37			
GHI (entre 5.8 e 6.1) Figura 3.11									
1	•					•	•		

PLANO DECENAL DE EXPANSÃO DE ENERGIA

2027

CASO 5: AVALIAÇÃO DA TECNOLOGIA SOLAR FOTOVOLTAICA Página 80

Além de considerar a contribuição solar na restrição de capacidade, a sensibilidade 5.2 foi elaborada admitindo-se a hipótese de redução expressiva no investimento da opção fotovoltaica, de 40% a partir de 2024, de modo que seu custo de implantação cairia para aproximadamente R\$ 2.400/kW

Considerando esses efeitos conjuntos, esta fonte passaria a ser competitiva frente às demais opções e a expansão para o mercado de referência passa para um nível de 3.000 MW/ano, atingindo assim o limite superior considerado para este caso.

Essa maior penetração solar substitui, predominantemente, parte da expansão eólica, além de reduzir a necessidade de complementação de potência.

SIMULAÇÃO ZABUMBÃO

Horas sol dia	MW / km2		Pot MW 50%	R\$ ano	Pot MW 25%	Fatura R\$ ano	Custo implantação MR\$ / MWh	Custo implantação MR\$ (25%)	TIR	Pay back
6,62	80,4	200	52,04	25.148.395,44	26,02	12.574.197,72	3,00	78,06	10%	7,80

Cota (m)	Área (km2)	Volume (hm3)	Volumes notáveis
637,00	0,000	0,000	
650,00	1,294	5,092	Mínimo Operacional
651,00	1,453	6,465	
652,00	1,602	7,994	
653,00	1,748	9,670	
654,00	1,891	11,491	
655,00	2,028	13,452	
655,74	2,103	14,982	Alerta ANA 2014
656,00	2,127	15,532	
657,00	2,221	17,706	
658,00	2,322	19,976	
659,00	2,459	22,357	
660,00	2,835	25,059	
661,00	2,992	27,971	
662,00	3,153	31,044	
663,00	3,309	34,276	
665,00	3,601	41,184	
667,00	3,891	48,676	
669,00	4,194	56,763	
670,00	4,342	61,032	Máximo

Usina Flutuante de Huainan (China) – 150 MWp

- Localização: Huainan
- Lago artificial formado em cava de antiga mina de carvão mineral
- Projeto de ancoragem e flutuadores da Sungrow
- Potência instalada: 150 MWp (maior do mundo)
- Sem alteração da qualidade da água devido a implantação da usina, comprovado por certificadores internacionais.

Usina flutuante - UHE Sobradinho

- Localização: Sobradinho BA
- Reservatório de UHE Sobradinho
- Projeto de ancoragem e flutuadores da Ciel et Terre
- Potência instalada: 5 MW
- P&D da Chesf e Eletronorte

Fazenda Figueiredo – Cristalina - GO

VANTAGENS DA INSTALAÇÃO DE PLACAS FOTOVOLTAICAS EM ESPELHOS D'ÁGUA

- Possível facilidade de conexão nas subestações das usinas ou nas linhas próximas às mesmas;
- Facilidade no O&M das usinas flutuantes, devido a sinergia com o O&M de barragens existentes;
- Diminuição das perdas por sujidade (empoeiramento da superfície dos módulos);
 - Melhora de desempenho dos módulos, quando comparados a usinas fixas em solo, devido a diminuição das perdas por temperatura;
- Custo evitado de investimento na compra/arrendamento de terrenos;
- Redução da evaporação de água nos reservatórios;
- Área para implantação sem comprometimento de área significativa do lago;
- Tecnologia com certificações internacionais que comprovam sua aplicabilidade em corpos d'água;
- Possibilidade de implantação em qualquer tipo de reservatório: estações de tratamento de água, barragens de acumulação; açudes de água, PCHs e UHEs, reservatórios artificias para agricultura;

Fonte: CEMIG

- Rapidez para implantação: até 400 kW com 15 profissionais;
- Preços dos componentes flutuantes em queda;
- Possibilidade de desenvolvimento de usinas híbridas.

DESAFIOS TÉCNICOS PARA A INSTALAÇÃO DE PLACAS FOTOVOLTAICAS EM ESPELHOS D'ÁGUA

- Somente dois fornecedores em grande escala no mundo: Ciel et Terre e Sungrow.
- Preço ainda elevado dos flutuantes em relação a estrutura em solo;
- No Brasil, somente a Ciel et Terre está presente;
- Usinas de grande porte construídas apenas na Ásia, especialmente na China;
- Ancoragem das usinas em grandes reservatórios e com grande variação de nível d'água;
 - Apenas a solução da Sungrow está adaptada para grandes reservatórios (inversores e transformadores em estruturas flutuantes);

Fonte: CEMIG

- Necessidade de utilização de componentes especiais, por exemplo módulos com backsheet impermeável e cabos flutuantes ou submersos;
- Dificuldade de manutenção do ângulo azimutal devido a variações no corpo d'água, o que dificulta a obtenção de ganho ótimo;
- Incerteza regulatória quanto a utilização dos reservatórios para implantação das usinas;
- À luz da Resolução Normativa N° 738, de 27/09/2016, nos seus Anexos I e II, quais são os procedimentos específicos necessários ao Requerimento de Outorga e à obtenção da Outorga para uma usina solar fotovoltaica flutuante.
- Questões quanto aos estudos ambientais necessários para o licenciamento deste tipo de usina;

DEFINIÇÕES REGULATÓRIAS A SEREM AVALIADAS

ANA / Regulador Estadual

- Definir cota mínima para implantação das placas fotovoltaicas
- Aprovar disposição das placas no espelho d'água de forma a compatibilizar os usos do espelho com a navegação, turismo, lazer, pesca em tanque rede, áreas de preservação ambiental e outras aplicações que venham a ocorrer
- Impor obrigação ao empreendedor da barragem/reservatório quanto a ações de monitoramento, operação e manutenção da barragem visando atender às demandas de gestão dos usos e para a segurança da barragem

IBAMA / Regulador Ambiental

- Definir a aplicabilidade de licenças ambientais em função do porte do empreendimento, das características do espelho d'água e do volume de água armazenado à cota mínima definida pela ANA
- Definir estudos mínimos a serem realizados para a avaliação do impacto ambiental no reservatório
- Avaliar e emitir as licenças ambientais

ANEEL

- Definir condições para a contratação de energia oriunda de empreendimento fotovoltaicos em reservatórios, inclusive quanto à consorciação da geração hidrelétrica com a geração fotovoltaica
- Consultar a ANA e o IBAMA para a definição das condições regulatórias supradefinidas
- Encarregar-se da organização de leilões e outros dispositivos para a contratação dos empreendimentos
- Emitir outorga e licença para a implantação do empreendimento

DEFINIÇÕES ADMINISTRATIVAS A SEREM AVALIADAS

EPE

- Estudar o potencial de geração por placas fotovoltaicas em reservatórios para usos múltiplos
- Definir metas de geração e locais para a implantação dos empreendimento no âmbito dos planos de expansão da geração
- Definir diretrizes para a contratação e regulação dos empreendimentos

Ministério do Desenvolvimento Regional (Casa Civil?)

- Editar Portaria (Decreto) definindo procedimentos a serem observados pelos órgãos federais para a implantação de empreendimentos de geração de energia elétrica por placas fotovoltaicas em suas áreas de abrangência
- Definir obrigações aos órgãos federais gestores de reservatórios de contratação de ações para a operação,
 monitoramento e manutenção das barragens tendo em vista os usos múltiplos e a segurança das barragens

ÓRGÃOS FEDERAIS GESTORES DE BARRAGENS E RESERVATÓRIOS

- Atender às disposições ambientais e de recursos hídricos antes da contratação de empreendimento fotovoltaicos
- Incluir dentre as obrigações do empreendedor da geração fotovoltaica as ações de operação, manutenção e monitoramento da barragem tendo em vista os usos múltiplos e a segurança da barragem
- Garantir o uso do espelho d'água e da infraestrutura da barragem para a implantação do empreendimento

RESOLUÇÃO Nº 585, DE 03 DE ABRIL DE 2017 Documento nº 00000.020148/2017-17

Dispõe sobre condições de uso dos recursos hídricos no reservatório Ceraíma.

O DIRETOR-PRESIDENTE DA AGÊNCIA NACIONAL DE ÁGUAS – ANA, no uso da atribuição que lhe confere o art. 95, inciso XVII E XVII, do Regimento Interno, aprovado pela Resolução nº 2020, de 15 de dezembro de 2014, torna público que a DIRETORIA COLEGIADA em sua 650ª Reunião Ordinária, realizada em 03 de abril de 2017, com fundamento no art. 12, inciso V, da Lei nº 9.984, de 17 de julho de 2000, com base nos elementos constantes do Processo nº 02501.001868/2015-04, resolveu:

Art. 3º As outorgas de direito de uso neste sistema hídrico devem conter as seguintes exigências:

- I. O outorgado deverá manter em funcionamento sistema de medição dos volumes captados acumulados;
- II. O outorgado deverá informar os volumes captados mensalmente durante o ano anterior e os volumes mensais previstos para o ano subsequente por meio da Declaração Anual de Uso dos Recursos Hídricos DAURH, até 31 de janeiro de cada ano, conforme estabelece a Resolução ANA nº 603, de 2015;
- III. Interessados que tenham tido seus requerimentos indeferidos por indisponibilidade de recursos hídricos, a partir desta Resolução, serão comunicados pela ANA na oportunidade de nova disponibilidade, sem prejuízo a requerimentos novos ou em análise.
- IV. Renovação de outorgas ou requerimentos de transferência da titularidade de outorga de direito de uso, previstos nos arts. 2º e 22 da Resolução CNRH nº 16, de 2001, levarão em consideração o histórico do uso durante o período outorgado e o estágio de implementação do projeto.

Art. 4º Os usos com captação instalada igual ou inferior a 4 l/s (15 m³/h) independem de outorga de direito de uso.

Art. 5° A outorga para o direito de uso na agricultura irrigada deverá contemplar eficiência mínima global no empreendimento maior ou igual a 75%.

Art. 6º Os prestadores de serviços de abastecimento de água deverão possuir plano de contingência e de ações emergenciais, com ações vinculadas a eventuais restrições de uso, conforme normas editadas pela respectiva entidade reguladora da política de saneamento básico, nos termos do inciso XI do art. 22 da Lei nº 11445, de 2007.

Art. 7º Os usos de recursos hídricos que não estejam em acordo com os termos desta Resolução devem ser adequados no prazo de 180 (cento e oitenta) dias a partir da sua publicação ou, no caso de outorgado, do recebimento de notificação emitida pela Superintendência de Regulação da ANA.

	Volume	Cota m		Condição de uso		
Estado Hidrológico	hm3 (abril)	(abril)	Uso	l/s	%	
Verde	>= 39 hm3	>= 512,13 m	Todos	350	100%	
	Entre	Fuere	Abastecimento SIAA Guanambi	Entre 24 e 97	Entre 25 e 100%	
Amarelo	Entre 14,6 e 39 hm3	Entre 504,67 e 512,13 m	Irrigação Perímetro Ceraíma	Entre 53 e 213	Entre 25 e 100%	
			Demais usos Entorno	Entre 10 e 40	Entre 25 e 100%	
	22,70 hm3]		Abastecimento SIAA Guanambi	Entre 24 e 97	Entre 25 e 100%	
Curva-guia EH Amarelo		507,50 M	Irrigação Perímetro Ceraíma	Entre 53 e 213	Entre 25 e 100%	
			Demais usos Entorno	Entre 10 e 40	Entre 25 e 100%	
			Abastecimento SIAA Guanambi	<= 24	<= 25%	
Vermelho	<= 14,6 hm3	<= 504,67 m	Irrigação Perímetro Ceraíma	<= 53	<= 25%	
			Demais usos Entorno	<= 10	<= 25%	

ANA AGÊNCIA NACIONAL DE ÁGUAS

BOLETIM DE ACOMPANHAMENTO DA ALOCAÇÃO DE ÁGUA 2018/2019 - AÇUDE CERAÍMA

ABRIL / 2019

ALOCAÇÃO DE ÁGUA DATA: 15/05/2018 LOCAL: GUANAMBI-BA

COMAR – Coordenação de Marcos Regulatórios e Alocação de Água (61) 2109-5566

<u>Lauleste Públio</u> - CODEVASF – (77) 99155-0405

<u>Carla Pedreira</u> - EMBASA – (77) 3454-8400

<u>João Batista Junior</u> – INEMA – (77) 99994-6940 (Coordenador da Comissão)

<u>Vanderlei Florêncio</u> - Câmara de Vereadores – (77) 99994-7448 / 3493-2053

<u>Sebastião Batista</u> -Ass.Produtores do Bau – (77) 98815-2680

<u>Marco Antônio Fraga</u> - Perímetro Ceraíma - (77) 99994-7448 / (77)3493-2053

<u>Wilton Flávio Rocha -</u> Pref. de Guanambi - (77) 99202-7777

<u>Cosme Pereira</u> - FETAG BA - (77) 99961-5931

Estados Hidrológicos / Volume Esperado / Volume Observado 50,0 77,7% 75,9% 74,2% 74,3% 40.0 73,3% 72,6% 72,4% 71,9% 80.7% 79,3% 77,7% 76,1% /olume (hm³) 30,0 20,0 10,0 0,0 ■EH VERDE = EH AMARELO EH VERMELHO Vol observado —Vol esperado

	Volume	Observado		MÊS Esperado	Volume	Observado			Volume	Observado	
MÊS	Esperado	Volume Cota	Esperado		Volume	Cota	MÊS	Esperado	Volume	Cota	
	(hm³)	(hm³)	(m)		(hm³)	(hm³)	(m)		(hm ³)	(hm³)	(m)
JUN / 2018	41,18	41,25	512,52	OUT / 2018	36,03	37,10	511,65	FEV / 2019	32,77	37,96	511,87
JUL / 2018	40,03	40,52	512,31	NOV / 2018	35,07	36,72	511,55	MAR / 2019	31,81	37,45	511,74
AGO / 2018	38,71	39,69	512,10	DEZ / 2018	34,20	39,69	512,31	ABR / 2019	30,91	36,99	511,62
SET / 2018	37.33	38.86	511.86	JAN / 2019	33.66	38.78	512.08				

BOLETIM DE ACOMPANHAMENTO DA ALOCAÇÃO DE ÁGUA

2018/2019 - AÇUDE CERAÍMA

ABRIL / 2019

Usos Esperados

Usos (I/s) jul fev média mai jun set dez abr ago out nov jan mar Abastecimento público - SIAA 97 97 97 97 97 97 97 97 97 97 97 97 97 Guanambi e região (BA) Perímetro Irrigado Ceraíma 0 0 0 0 0 0 0 0 0 0 0 0 0 Demais usos no entorno do 40 40 40 40 40 40 40 40 40 40 40 40 40 reservatório 137 **Total** 137 137 137 137 137 137 137 137 137 137 137 137

Usos Observados

Usos (I/s)	mai	jun	jul	ago	set	out	nov	dez	jan	fev	mar	abr	média
Abastecimento público – SIAA Guanambi e região (BA)	41	34	43	57	54	57	48	55	58	60	54,6	49,7	51
Perímetro Irrigado Ceraíma	0	0	0	0	0	0	0	0	0	0	0	0	0
Demais usos no entorno do reservatório	SI												
Total	≥ 41	≥ 34	≥ 43	≥ 57	≥ 54	≥ 57	≥ 48	≥ 55	≥ 58	≥ 60	≥ 55		≥ 51
<u> </u>						•		-	•		-	•	
EMBASA - Adutora do Algodão	228	228	217	217	219	225	206	215	231	221	216	219	220

SI - Sem Informação NA - Não se Aplica

O Termo de Alocação e os Boletins de Acompanhamento estão disponíveis na página da ANA:

Regulação >>> Resoluções e Normativos >>> Regras especiais - Alocação de Água.

BOLETIM DE ACOMPANHAMENTO DA ALOCAÇÃO DE ÁGUA 2018/2019 - AÇUDE CERAÍMA

ABRIL / 2019

Encaminhamentos da Alocação de Água

Item	Atividade	Responsável	Prazo / Periodicidade	ATENDIDA	ATENÇÃO	NÃO ATENDIDA
1	MONITORAMENTO)				
1.1	Medição de cotas do reservatório	CODEVASF	Semanal			
1.2	Medição dos volumes captados pela EMBASA (junto a Comissão de Acompanhamento de Alocação)	EMBASA	Mensal			
1.3	Consumo de energia elétrica para irrigação e aquicultura	ANA	Anual			
2	INSTRUMENTAÇÃO)				
2.1	Recuperação hidromecânica do açude Ceraíma	CODEVASF	2018			
2.2	Instalação de réguas complementares no açude	ANA / INEMA	Imediato			
2.3	Batimetria (divulgação)	ANA	2018			
3	OUTRAS AÇÕES					
.	Relatório sobre os custos para operação e manutenção da barragem Ceraíma	CODEVASF	Junho		OBS. 1	
3.2	Estudos de modelos institucionais para operação e manutenção da barragem Ceraíma	ANA	Julho	OBS. 2		
3.3	Avaliação dos modelos institucionais para operação e manutenção da barragem Ceraíma	Comissão de Acompanhamento	2018		OBS. 2	
3.4	Informações sobre os licenciamentos do empreendimento Ferro de Pedra e do Parque Eólico	INEMA	Junho	OBS. 4		OBS. 3
3.5	Avaliação do impacto dos empreendimentos listados no item 3.4 no reservatório Ceraíma	Comissão de Acompanhamento	2018		OBS. 3	

BOLETIM DE ACOMPANHAMENTO DA ALOCAÇÃO DE ÁGUA

2018/2019 - AÇUDE CERAÍMA ABRIL / 2019

Item	Atividade	Responsável	Prazo / Periodicidade	ATENDIDA	ATENÇÃO	NÃO ATENDIDA
3.0	Relatório sobre a situação da modernização do sistema de distribuição do perímetro Ceraíma	CODEVASF	Junho			

	Observações Relevantes
1.	CODEVASF enviou Ofício nº 567/2018/PR/GB, de 07/11/2018, informando que está em elaboração um modelo institucional de custos e tarifação para serviços de armazenamento, operação e manutenção de todas suas barragens. Também informou estimativa de custos de Operação, Manutenção e Administração da Barragem de Ceraíma é de R\$300.000,00/ano. Porém, não enviou o relatório completo de custos de manutenção e operação da barragem. Informou ainda que os serviços de instalação e montagem da nova rede hidráulica do perímetro de Ceraíma está com execução física de 38%.
2.	A COMAR/ANA enviou em 14/12/2018 documentos com alguns modelos organizacionais para operação, monitoramento e manutenção preventiva de barragens para a Comissão de Acompamnhamento da Alocação. Ainda não houve manifestação.
3.	Na data de 07/08/2018, o sr. João Batista dos Santos Júnior informou que aguardavam as informações de Salvador sobre o licenciamento da BAMIN e dos Parques eólicos para posterior envio. Até a presente data não houve envio.
4.	Na data de 29/03/2019, o sr. João Batista dos Santos Júnior encaminhou cópia da Licença de Instalação da BAMIN.

3. Ações previstas na Alocação 2018/2019 Informações passadas pela Codevasf:

Custo de O&M do reservatório de Ceraima:

Estimativa anteriormente informada: R\$300.000,00/ano Haverá revisão dos serviços de segurança de barragens: aguardando a orçamentação

Composição de equipe:

1 posto de vigilância (4 vigilantes 12/32),

2 zeladores com salário mínimo, encargos e impostos

Custeio de um escritório com engenheiro e secretário

Composição do orçamento:

- custo anual de equipamentos de manutenção básica e veículos
- custo anual de manutenção hidromecânica terceirizada
- custo anual da revisão periódica (1/5 do valor ao ano: quinquenal)
- custo anual de treinamento em emergência (exigência da PL em tramitação)
- custo anual do seguro da barragem (exigência da PL em tramitação)

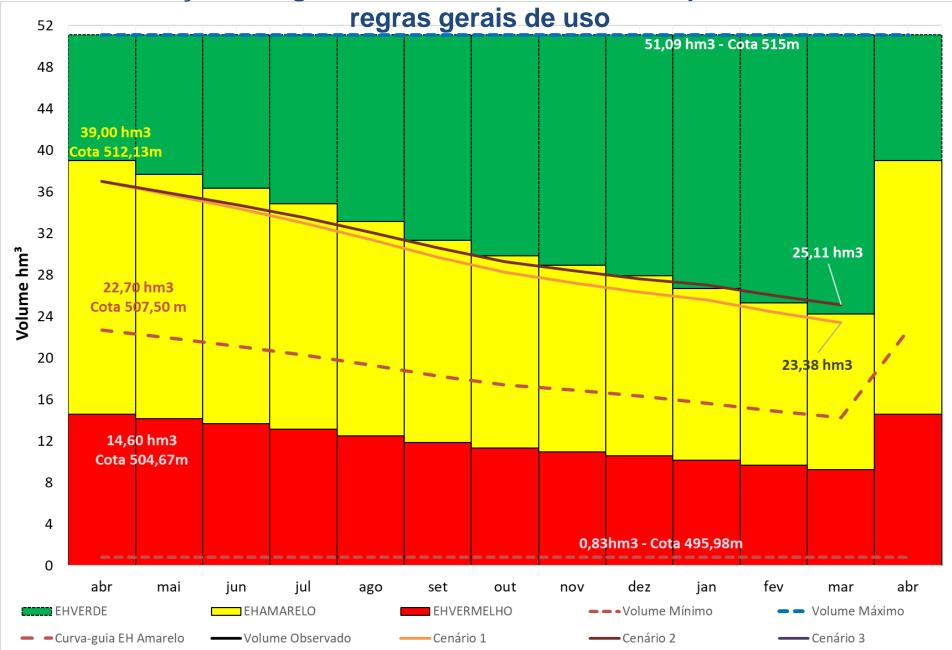
4. Alocação de Água 2019/2020 – demandas, disponibilidades e regras gerais de uso

Informações passadas pela Codevasf:

Retomada da operação do Perímetro

Obra finalizada: fase de testes e aprovação

Área estimada já cultivada: 50 hectares


Área estimada a entrar em operação até dez/2019: 220 hectares

Vazão demandada para 2019: 145 L/s

4. Alocação de Água 2019/2020 – demandas, disponibilidades e regras gerais de uso

Cenário 1		Cenário 2	
%	I/s	%	I/s
53%	51	50%	49
69%	147	50%	107
100%	40	50%	20
TOTAL	239	TOTAL	175

4. Alocação de Água 2019/2020 – demandas, disponibilidades e

Pauta da Reunião

5. Comissão de Acompanhamento da Alocação

A COMAR informa que haverá Alocação no Poço do Magro em 2020 – demanda a associação Morro de Dentro

COMAR – Coordenação de Marcos Regulatórios e Alocação de Água

comar@ana.gov.br | (+55) (61) 2109 -5566

www.ana.gov.br

