Transfer of dioxins and dl-PCBs in farm animals

Ron Hoogenboom

Clay incident 2004: discovery and T&T

Major questions

Where do the dioxins come from?
How widespread is this?
When did this start?
When will the milk have levels below the limit?

Application of PBPK model by RIVM

Studies on transfer

Two types of studies Follow-up of incidents In this case only depletion kinetics Well-controlled animal studies Several studies performed in the Netherlands Often related to incident Studies on milk and eggs give most information, Animals don't need to be killed Laying hens are small

Dairy cows

Transfer rates dairy cows

Table 2

Carry-over^a rates in % as reported for lactating cows in various studies and the present study.

Daily dose (ng TEQ kg bw ⁻¹ day ⁻¹)	Slob 1995	Slob 1995	McLachlan and Richter, 1998		Malisch 2000	Huwe 2005	Brambilla 2008
	2,5	0.2	0.002	0.019	0.02	0.23	0.026
Source	Fly ash	MWI	Natural	Sludge	Citrus pulp	MgO	Minerals
Number of cows	2	Many	4	4	Many	2	1604
Duration exposure (d)	1	30	84	23	180	40	28
Withdrawal period (d)	56	-	-	-	350	40	
kg milk fat day ⁻¹	1.0	1.0	0.9	1.0	1.2	0.7	1.0
Study design	Stable	Field	Stable	Stable	Field	Stable	Field
2,3,7,8-TCDD	0.9	15	38	51	58	nd	29,7
1,2,3,7,8-PeCDD	0.7	10	39	27	49	26,9	54,2
1,2,3,4,7,8-HxCDD	0.3	5.6	33	21	51	20.0	40,9
1,2,3,6,7,8-HxCDD	0.3	6.4	33	13	77	27.3	48.8
1,2,3,7,8,9-HxCDD	0.1	3.1	16	10	35	15.8	28.6
1,2,3,4,6,7,8-HpCDD	0.05	0.6	3.4	2.0	18	4.8	10,3
1,2,3,4,6,7,8,9-OCDD	0.03	0.1	0.7	0,3	3.7	0.7	0.4
2,3,7,8-TCDF	0.03		nd	nd	2,8	nd	-
1,2,3,7,8-PeCDF	0.02		nd	nd	3.8	2.3	4.2
2,3,4,7,8-PeCDF	0.8	12.0	40	65	58	23,8	55,6
1,2,3,4,7,8-HxCDF	0.3	4.3	24	23	33	21.3	42.4
1,2,3,6,7,8-HxCDF	0.2	3.6	19	27	30	20,6	43,9
2,3,4,6,7,8-HxCDF	0.4	4.2	19	20	19	17.5	38,9
1,2,3,7,8,9-HxCDF	0.05				nd	nd	8,1
1,2,3,4,6,7,8-HpCDF	0.04	0.4	3.4	1.9	3.1	4.4	10,2
1,2,3,4,7,8,9-HpCDF	0.05	0.5	nd	3.6	4,2	5.6	11.0
1,2,3,4,6,7,8,9-OCDF	0.02			0.3	0.4	0,5	0.4
PCB77 PCB81		1,2					
PCB126		35,0				26,1	
PCB169		31.0				37.6	

* Carry-over rates are estimated from the intake through the feed and excretion in milk at "steady state".

Impact of fires for agricultural activities

Transfer rates dairy cows: what to use?

Table 2

Carry-over* rates in % as reported for lactating cows in various studies and the present study.

Daily dose (ng TEQ kg bw ⁻¹ day-	1) Slob 1995	Slob 1995	McLachla Richter, 1	n and 1998	Malisch 2000	Huwe 2005	Brambilla 2008
	2,5	0.2	0.002	0.019	0.02	0.23	0.026
Source	Fly ash	MWI	Natural	Sludge	Citrus pulp	MgO	Minerals
Number of cows	2	Many	4	4	Many	2	1604
Duration exposure (d)	1	30	84	23	180	40	28
Withdrawal period (d)	56	-	-	-	350	40	
kg milk fat day ⁻¹	1.0	1.0	0,9	1.0	1,2	0.7	1.0
Study design	Stable	Field	Stable	Stable	Field	Stable	Field
2,3,7,8-TCDD	0,9	15	38	51	58	nd	29.7
1,2,3,7,8-PeCDD	0.7	10	39	27	49	26,9	54.2
1,2,3,4,7,8-HxCDD	0.3	5.6	33	21	51	20,0	40.9
1,2,3,6,7,8-HxCDD	0.3	6.4	33	13	77	27.3	48.8
1,2,3,7,8,9-HxCDD	0.1	3.1	16	10	35	15,8	28.6
1,2,3,4,6,7,8-HpCDD	0.05	0.6	3.4	2.0	18	4.8	10,3
1,2,3,4,6,7,8,9-OCDD	0.03	0.1	0.7	0,3	3.7	0.7	0.4
2,3,7,8-TCDF	0.03		nd	nd	2,8	nd	-
1,2,3,7,8-PeCDF	0.02		nd	nd	3.8	2,3	4.2
2,3,4,7,8-PeCDF	0.8	12.0	40	65	58	23,8	55.6
1,2,3,4,7,8-HxCDF	0.3	4.3	24	23	33	21.3	42.4
1,2,3,6,7,8-HxCDF	0.2	3.6	19	27	30	20.6	43.9
2,3,4,6,7,8-HxCDF	0.4	4.2	19	20	19	17,5	38,9
1,2,3,7,8,9-HxCDF	0.05				nd	nd	8.1
1,2,3,4,6,7,8-HpCDF	0.04	0.4	3.4	1.9	3,1	4.4	10.2
1,2,3,4,7,8,9-HpCDF	0.05	0.5	nd	3.6	4.2	5.6	11.0
1,2,3,4,6,7,8,9-OCDF	0.02			0.3	0.4	0,5	0.4
PCB77 PCB81		1.2					
PCB126		35,0				26,1	
PCB169		31.0				37.6	

^a Carry-over rates are estimated from the intake through the feed and excretion in milk at "steady state".

Carry-over of dioxins from contaminated corn in dairy cows

- Corn contaminated by smoke from PVC fire
 - Level of 0.8 ng TEQ/kg (ML 0.75)
- Study with 3 dairy cows
 - 5 weeks exposure
 - 5 weeks clean feed

Study dairy cows with contaminated corn silage primarily dioxins due to fire

Cows fed 15 kg (dm) corn silage/day, 0.8 ng TEQ/kg (88% dm) for 5 weeks

Transfer rates dairy cows

Table 2

Carry-over^a rates in % as reported for lactating cows in various studies and the present study.

Daily dose (ng TEQ kg bw ⁻¹ day ⁻¹)	Slob 1995	Slob 1995	McLachla Richter, 1	n and 1998	Malisch 2000	Huwe 2005	Brambilla 2008	This study	
	2,5	0,2	0.002	0.019	0.02	0,23	0,026	0.023	0.018
Source	Fly ash	MWI	Natural	Sludge	Citrus pulp	MgO	Minerals	Maize silage	Sugar beet
Number of cows	2	Many	4	4	Many	2	1604	3	3
Duration exposure (d)	1	30	84	23	180	40	28	33	33
Withdrawal period (d)	56	-	-	-	350	40			
kg milk fat day ⁻¹	1.0	1.0	0,9	1.0	1.2	0.7	1.0	1.5	1.4
Study design	Stable	Field	Stable	Stable	Field	Stable	Field	Stable	Stable
2,3,7,8-TCDD	0.9	15	38	51	58	nd	29.7	30,3	36.1
1,2,3,7,8-PeCDD	0.7	10	39	27	49	26,9	54,2	35,2	37,6
1,2,3,4,7,8-HxCDD	0.3	5.6	33	21	51	20.0	40,9	26,9	23.4
1,2,3,6,7,8-HxCDD	0.3	6.4	33	13	77	27.3	48.8	29,8	10.7
1,2,3,7,8,9-HxCDD	0.1	3.1	16	10	35	15,8	28.6	20.1	18.1
1,2,3,4,6,7,8-HpCDD	0.05	0.6	3,4	2.0	18	4.8	10,3	4.2	0.8
1,2,3,4,6,7,8,9-OCDD	0.03	0.1	0.7	0.3	3.7	0.7	0.4	0.2	0.0
2,3,7,8-TCDF	0.03		nd	nd	2.8	nd	-	1.8	1.1
1,2,3,7,8-PeCDF	0.02		nd	nd	3.8	2.3	4.2	4.1	2.7
2,3,4,7,8-PeCDF	0.8	12.0	40	65	58	23,8	55.6	30.7	24.6
1,2,3,4,7,8-HxCDF	0.3	4.3	24	23	33	21.3	42.4	24.2	11.5
1,2,3,6,7,8-HxCDF	0.2	3.6	19	27	30	20.6	43,9	25.5	12.1
2,3,4,6,7,8-HxCDF	0.4	4.2	19	20	19	17.5	38,9	23.3	8.8
1,2,3,7,8,9-HxCDF	0.05				nd	nd	8.1	7.3	nd
1,2,3,4,6,7,8-HpCDF	0.04	0.4	3.4	1.9	3.1	4.4	10.2	4.8	1.4
1,2,3,4,7,8,9-HpCDF	0.05	0.5	nd	3,6	4.2	5.6	11.0	6.7	0.0
1,2,3,4,6,7,8,9-OCDF	0.02			0,3	0.4	0,5	0.4	0.0	0.0
PCB77		1.2						2.0	0.0
PCB81								12,9	9.7
PCB126		35.0				26,1		32,4	36,1
PCB169		31,0				37.6		35,8	35,8

* Carry-over rates are estimated from the intake through the feed and excretion in milk at "steady state".

Laying hens

Study on dioxin and dl-PCB levels in eggs Belgium feed 15x diluted; 1 week exposure, then clean feed

Follow-up study

Mixture of dioxins and PCBs added to feed at different levels

- Also feed with soil
- Long exposure (56 d) and depletion periods (56 d)
- Both eggs and meat analyzed
- Modelling by RIVM
- Papers
 - Hoogenboom et al. 2006
 - Van Eijkeren et al. 2006

Transfer dioxins from feed to eggs

Adapted from Hoogenboom et al. 2006, Chemosphere 68, 814-823

Feed egg limits relationship

PBPK-modelling laying hen

- Based on physiology in the animal
 - Absorption, excretion
 - Exchange between blood and tissues
 - Excretion in eggs
 - Only relevant tissues modelled
- Normally modelled on TEQ (as if only one compound)

Kinetics in laying hens

PB-PK Models

TEQ-based modelling (sum dioxins, dl-PCBs)

Congener specific modelling

Differences in absorption, metabolism and carry-over between congeners Also depends on animal species Therefore also modelling per congener Laying hen • Dairy cow Integration RIKILT/RIVM models in CORAM • Will be on website

Lower chlorinated congeners drive TEQ: no big differences

Higher chlorinated congeners drive TEQ: big differences

Problem

- Often very high levels of dioxins in livers of sheep
- EFSA opinion: potential risk for the consumer
- Very little information on relation between intake and levels in livers and fat
- Therefore carry-over study with EU-QSAFFE project

Levels of dioxins and dl-PCBs in livers and meat of sheep (EFSA 2010)

	n	Min	P5	P50	P90	P95	P99
Dioxins							
Liver	332	0.3	1.0	7.8	36.1	55.5	92.6
Meat/fat	175	0.1	0.2	0.5	1.5	2.3	3.9

Based on TEFs 1998; ML liver until 2012 was 6 and 12 pg TEQ/g fat, for meat and fat: 3.0 and 4.5 pg TEQ/g fat

Levels of dioxins and dl-PCBs in livers and meat of sheep (EFSA 2010)

	n	Min	P5	P50	P90	P95	P99
Dioxins							
Liver	332	0.3	1.0	7.8	36.1	55.5	92.6
Meat/fat	175	0.1	0.2	0.5	1.5	2.3	3.9
dl-PCBs							
Liver	332	0.1	0.2	5.8	21.9	41.6	110.4
Meat/fat	175	0.1	0.2	0.9	2.5	3.3	9.7
Sum TEQ							
Liver	332	0.5	1.4	14.3	61.1	98.1	167.5
Meat/fat	175	0.2	0.3	1.4	3.5	5.5	10.6

Based on TEFs 1998; ML liver until 2012 was 6 and 12 pg TEQ/g fat, for meat and fat: 3.0 and 4.5 pg TEQ/g fat

WAGENINGEN <mark>UR</mark>

QSAFFE Task 4.1 Carry-over study with sheep

- Study with lambs performed by BfR, Berlin
- Sheep fed with slightly contaminated feed followed by clean feed (feed delivered by RIKILT)
- Analysis of samples by RIKILT
- Modelling of data by RIVM (congener specific)

Carry-over study with sheep

- Study with blackhead lambs performed by BfR Berlin
- Sheep fed with contaminated grass followed by clean grass (both from NL; contaminated grass from flood plain)

	Dioxins pg TEQ/g dm	dl-PCBs pg TEQ/g dm	Sum pg TEQ/g dm	ndl-PCBs µg∕kg dm
Clean	0.27 (0.26)	0.06 (0.06)	0.33 (0.32)	0.45 (0.45)
Contaminated	1.71 (1.71)	0.32 (0.32)	2.04 (2.02)	2.33 (2.33)

Contaminated grass derived from river bank of IJssel river.
 Contamination due to high levels in soil partly ending up in the grass during harvesting

- ML: 0.75/1.25 ng TEQ/g dm, 10 µg/kg dm for ndl-PCBs
- Focus on dioxins

Dioxins in liver (blank)

Dioxins in liver (exposed for 112 d)

Dioxins in liver (wash-out after 56 days)

Dioxins and dI-PCBs in livers

Dioxins in livers versus kidney fat

WAGENINGEN UR

Dioxin patterns in grass, liver and kidney fat

Congener ratios liver/kidney fat

What about meat?

- In general distribution over fat compartments is thought to be equal
 - So levels in kidney fat should be similar as in meat fat
- Based on EFSA database this appears not to be correct
 - But data from different countries, so not the same animals
- What about the sheep in our study?
- Ratio meat fat/kidney fat:
 - 0.9 ± 0.1 at day 56, 0.8 ± 0.1 at day 112

Expression livers on fresh weight base

Highest levels dioxins and total TEQ around 59 and 84 pg TEQ/g fat

• Current EU MLs: 4.5 and 10 pg TEQ/g fat

Fat content

Levels very stable around 4-5%

Expression livers on fresh weight base

Highest levels dioxins and total TEQ around 59 and 84 pg TEQ/g fat
Current EU MLs: 4.5 and 10 pg TEQ/g fat
Based on fresh weight around 3 and 4 pg TEQ/g liver
New proposed MLs: 1.25 and 2 pg TEQ/g weight

Pigs

Rapid increase in weight, 0-110 kg in 6 months

 Also increase in fat content

 Some PCDFs seem metabolized
 One study by RIKILT/ASG/RIVM

 Using feed from Belgium crisis
 Paper shows BCFs (level in fat/level in feed)

 Modelled at a later stage related to gelatine incident

Levels in pigs fed Belgium feed (15x diluted) for 7 d at age 3 mo, followed by clean feed up to 12 wks

Week	dioxins	non-ortho	mono-	total	indicator PCBs	Ratio
		PCBs	ortho			indicator
			PCBs			PCBs/dioxins
		(pg TEQ/g	fat)		(µg/g fat)	(x1000)
0	26.1	15.3	81.9	123.3	3.48 ± 0.49	133
1	21.8	10.3	63.0	95.1	2.65 ± 0.33	122
2	15.0	6.4	48.1	69.5	2.01 ± 0.26	134
4	7.4	3.0	29.4	39.8	1.25 ± 0.17	168
8	3.3	1.3	17.7	22.3	0.76 ± 0.12	230
12	1.3	0.6	10.3	11.9	0.45 ± 0.06	357

PBPK model

Modelled data from pig study, taking into account the growth of pigs

Predictions based on model (gelatine incident, 2006)

Levels based on 2, 4, 6 or 8 wks contaminated feed (8.4 ng TEQ/kg), starting at age 126 d; followed by clean feed

RIKILT WAGENINGEN UR

Broilers

- Also broilers included in study
- Like pigs rapid growth, 0-2 kg in 6 weeks
- Treatment at age of 3 wks for 1 week
- Withdrawal periods of 0, 1 or 3 wks
- BCFs determined
 - Ratio in fat compared to feed
 - (see Hoogenboom et al. 2004)
- Data not modelled in PBPK

Study on broilers with Belgium feed

(15x diluted)

Week	dioxins	non-ortho	mono-ortho	total	Indicator	ratio
		PCBs	PCBs		PCBs	indicator
						PCBs/diox
		(pg TEQ/g	fat)		(µg/g fat)	(x1000)
Feed	48	20	96	164	3.8	79
0	102	84	216	402	6.2	61
1	55	41	121	217	3.2	58
3	26	22	61	109	1.5	58

feed in ng TEQ/kg dm; TEFs₁₉₉₈

High levels of dioxins and PCBs in meat and livers of pigs, goats, sheep and cows from Curaçao

Ron Hoogenboom, Guillaume ten Dam, Stefan van Leeuwen, Harry van Egmond, Jennyfer Nicolina, Arnold Dwarkasing

Samples from Curaçao

- End of 2014, request to analyze pork fat samples
- Regarding expected low levels, CALUX offered, with confirmation by GC/HRMS, if required (not expected)
- 17 samples in first shipment

First results pig fat

 All but 1 suspected
 Confirmation required

RIKILT		CALUX	PCDD/Fs	dl-PCBs	Sum	ndl-PCBs
nr	Nr	pg BEQ/g	pg TEQ/g	pg TEQ/g	pg TEQ/g	ng/g
354250	1	4.1				
354251	2	3.7				
354252	3	<0.5				
354253	4	1.5				
354254	5	2.4				
354255	6	4.4				
354256	7	3.4				
354257	8	1.5				
354258	9	5.7				
354259	10	8.1				
354260	11	5.6				
364940	11	5.1				
354261	12	3.1				
354262	13	3.1				
354263	14	7.4				
354264	15	6.1				
354265	16	4.9				
354266	17	2.1				

First results pig fat

		RIKILT		CALUX	PCDD/Fs	dl-PCBs	Sum	ndl-PCBs
		nr	Nr	pg BEQ/g	pg TEQ/g	pg TEQ/g	pg TEQ/g	ng/g
	relatively high	354250	1	4.1	0.38	0.18	0.56	10.2
	Number of	354251	2	3.7	1.04	0.34	1.38	4.04
		354252	3		0.24	0.16	0.40	1.21
	non-compliants	354253	4	1.5	0.42	1.39	1.80	87.6
		354254	5	2.4	0.29	0.09	0.38	4.82
	Overestimation	354255	6	4.4	1.12	0.17	1.39	6.18
	by CALUX	354256	7	3.4	0.35	0.16	0.51	2.26
	10 7	054057	0	1.5	0.59	0.18	0.77	8.27
	9 -			5.7	1.78	0.38	2.16	5.48
(fat)	8 -		*	8.1	2.91	1.22	4.13	20.2
BEQ/g	7 -		•	5.6	0.56	0.18	0.74	5.45
X (pg]	6 -	•		5.1	1.17	0.22	1.39	9.32
CALU				3.1	0.55	0.18	0.73	5.67
Ŭ	3 - • •			3.1	0.70	0.27	0.97	4.95
2	2 -			7.4	2.95	1.40	4.35	17.2
	1 -			6.1	1.85	1.05	2.90	11.0
	0.0 0.5 1.0 1.5 2.0 2.5	3.0 3.5	4.0 4.5	5.0 4,9	1.12	0.55	1.67	9.69
		Sum	TEQ (pg TEQ/g fa	nt) 2.1	0.22	0.10	0.32	1.97

More pig fat samples analyzed (GC/MS)

Also goats, cows, sheep

What about livers (sequestration)?

Dioxins and dl-PCBs bind to liver proteins (CYP 1A2)
Lipid-based levels higher in liver than fat
Congener-specific
Especially at higher levels: induction CYP 1A2
What about liver samples from Curacao?

Levels in livers (lipid based)

Levels in livers (fresh weight)

ML sum-TEQ: 0.5 pigs/cows, 2.0 sheep

Levels in livers (fresh weight)

ML sum-TEQ: 0.5 pigs/cows, 2.0 sheep

Relation fat/livers

What about low exposure?

Ratio liver/adipose tissue

Ratio liver/adipose tissue

General conclusions

Current limits in feed too high to prevent noncompliant levels in eggs

- Product Board eggs uses lower "guidance value"
- In lactating cows borderline
- Low levels in soil (few ng TEQ/kg) may cause problems in laying hens and maybe other species
 - Only estimates about soil intake
 - Current soil limits too high

Thank you for your attention

Questions?

